The haplotype-resolved genome assembly of an ancient citrus variety provides insights into the domestication history and fruit trait formation of loose-skin mandarins

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Genome Biology Pub Date : 2025-03-17 DOI:10.1186/s13059-025-03535-4
Minqiang Yin, Xiaochan Song, Chao He, Xiyuan Li, Mengyuan Li, Jiangbo Li, Hao Wu, Chuanwu Chen, Li Zhang, Zhenmei Cai, Liqing Lu, Yanhui Xu, Xin Wang, Hualin Yi, Juxun Wu
{"title":"The haplotype-resolved genome assembly of an ancient citrus variety provides insights into the domestication history and fruit trait formation of loose-skin mandarins","authors":"Minqiang Yin, Xiaochan Song, Chao He, Xiyuan Li, Mengyuan Li, Jiangbo Li, Hao Wu, Chuanwu Chen, Li Zhang, Zhenmei Cai, Liqing Lu, Yanhui Xu, Xin Wang, Hualin Yi, Juxun Wu","doi":"10.1186/s13059-025-03535-4","DOIUrl":null,"url":null,"abstract":"Loose-skin mandarins (LSMs) are among the oldest domesticated horticultural crops, yet their domestication history and the genetic basis underlying the formation of key selected traits remain unclear. We provide a chromosome-scale and haplotype-resolved assembly for the ancient Chinese citrus variety Nanfengmiju tangerine. Through the integration of 77 resequenced and 114 published citrus germplasm genomes, we categorize LSMs into 12 distinct groups based on population genomic analyses. We infer that the ancestors of modern cultivated mandarins diverged from wild mandarins in Daoxian approximately 500,000 years ago, when they entered the Yangtze and Pearl River Basins. There, they were domesticated into four ancient cultivation groups, forming the cornerstone of modern Chinese LSM cultivation. We identify selective sweeps underlying quantitative trait loci and genes related to important fruit quality traits, including sweetness and size. We reveal that the co-selection of sugar transporter and metabolism genes are associated with increased fruit sweetness. Significant alterations in the auxin and gibberellin signaling networks may contribute to the enlargement of LSM fruits. We also provide a comprehensive, high-spatiotemporal-resolution atlas of allelic gene expression during citrus fruit development. We detect 5890 allele pairs showing specific expression patterns and a significant increase in variation levels. Our study provides valuable genomic resources and further revises the origin and domestication history of LSMs, offering insights for genetic improvement of citrus plants.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"89 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03535-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Loose-skin mandarins (LSMs) are among the oldest domesticated horticultural crops, yet their domestication history and the genetic basis underlying the formation of key selected traits remain unclear. We provide a chromosome-scale and haplotype-resolved assembly for the ancient Chinese citrus variety Nanfengmiju tangerine. Through the integration of 77 resequenced and 114 published citrus germplasm genomes, we categorize LSMs into 12 distinct groups based on population genomic analyses. We infer that the ancestors of modern cultivated mandarins diverged from wild mandarins in Daoxian approximately 500,000 years ago, when they entered the Yangtze and Pearl River Basins. There, they were domesticated into four ancient cultivation groups, forming the cornerstone of modern Chinese LSM cultivation. We identify selective sweeps underlying quantitative trait loci and genes related to important fruit quality traits, including sweetness and size. We reveal that the co-selection of sugar transporter and metabolism genes are associated with increased fruit sweetness. Significant alterations in the auxin and gibberellin signaling networks may contribute to the enlargement of LSM fruits. We also provide a comprehensive, high-spatiotemporal-resolution atlas of allelic gene expression during citrus fruit development. We detect 5890 allele pairs showing specific expression patterns and a significant increase in variation levels. Our study provides valuable genomic resources and further revises the origin and domestication history of LSMs, offering insights for genetic improvement of citrus plants.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个古老柑橘品种的单倍型解析基因组组装为了解松皮柑的驯化历史和果实性状的形成提供了启示
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Genome Biology
Genome Biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍: Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens. With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category. Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.
期刊最新文献
Analysis of 30 chromosome-level Drosophila genome assemblies reveals dynamic evolution of centromeric satellite repeats The haplotype-resolved genome assembly of an ancient citrus variety provides insights into the domestication history and fruit trait formation of loose-skin mandarins A special short-wing petal faba genome and genetic dissection of floral and yield-related traits accelerate breeding and improvement of faba bean Systematic interrogation of functional genes underlying cholesterol and lipid homeostasis Exploring and mitigating shortcomings in single-cell differential expression analysis with a new statistical paradigm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1