Stable isotope inferred intrinsic water use efficiency and its relation to N sources in temperate tree regeneration with increasing levels of N deposition, precipitation, and temperature

IF 4.5 2区 生物学 Q2 ENVIRONMENTAL SCIENCES Environmental and Experimental Botany Pub Date : 2025-03-13 DOI:10.1016/j.envexpbot.2025.106125
Viktoria Dietrich , Jörg Niederberger , Markus Hauck
{"title":"Stable isotope inferred intrinsic water use efficiency and its relation to N sources in temperate tree regeneration with increasing levels of N deposition, precipitation, and temperature","authors":"Viktoria Dietrich ,&nbsp;Jörg Niederberger ,&nbsp;Markus Hauck","doi":"10.1016/j.envexpbot.2025.106125","DOIUrl":null,"url":null,"abstract":"<div><div>Under ongoing climate change, the mechanisms controlling the vigor and growth performance of tree regeneration are still less understood than for mature trees. Using stable isotope signatures (δ<sup>13</sup>C, δ<sup>15</sup>N), we studied intrinsic water use efficiency (WUE<sub>i</sub>, with δ<sup>13</sup>C as a proxy) and N relations and their interaction in differently drought-tolerant temperate tree species. We conducted a Germany-wide field study representing independent precipitation, temperature, and N deposition levels, comparing European beech (<em>Fagus sylvatica</em>), sessile oak (<em>Quercus petraea</em>), silver fir (<em>Abies alba</em>), and Douglas fir (<em>Pseudotsuga menziesii</em>) in the regeneration stage. At high N deposition WUE<sub>i</sub> was decreased in all tree species and in beech in particular, as δ<sup>13</sup>C signatures became more negative. This suggests that high N loads give rise to a differentiated discussion of the drought tolerance of tree species depending on the level of N deposition. In the conifers direct uptake of N from atmospheric deposition was important, as indicated by increasing foliar δ<sup>15</sup>N with increasing N concentration. In the broadleaved trees with better decomposable leaf litter, the main effect of N deposition was indicated through low δ<sup>15</sup>N signatures suggesting an intensification of uptake from N mineralization. Foliar δ<sup>15</sup>N signatures, and hence presumed changes in mineralization, were affected by soil chemistry, mean annual precipitation and temperature, but may also be influenced by deposition or other soil properties, which must be acknowledged when considering our results. To complement our results, comparable studies should be conducted for mature forest stands, including ecophysiological measurements of leaf gas exchange or tree water relations.</div></div>","PeriodicalId":11758,"journal":{"name":"Environmental and Experimental Botany","volume":"232 ","pages":"Article 106125"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098847225000425","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Under ongoing climate change, the mechanisms controlling the vigor and growth performance of tree regeneration are still less understood than for mature trees. Using stable isotope signatures (δ13C, δ15N), we studied intrinsic water use efficiency (WUEi, with δ13C as a proxy) and N relations and their interaction in differently drought-tolerant temperate tree species. We conducted a Germany-wide field study representing independent precipitation, temperature, and N deposition levels, comparing European beech (Fagus sylvatica), sessile oak (Quercus petraea), silver fir (Abies alba), and Douglas fir (Pseudotsuga menziesii) in the regeneration stage. At high N deposition WUEi was decreased in all tree species and in beech in particular, as δ13C signatures became more negative. This suggests that high N loads give rise to a differentiated discussion of the drought tolerance of tree species depending on the level of N deposition. In the conifers direct uptake of N from atmospheric deposition was important, as indicated by increasing foliar δ15N with increasing N concentration. In the broadleaved trees with better decomposable leaf litter, the main effect of N deposition was indicated through low δ15N signatures suggesting an intensification of uptake from N mineralization. Foliar δ15N signatures, and hence presumed changes in mineralization, were affected by soil chemistry, mean annual precipitation and temperature, but may also be influenced by deposition or other soil properties, which must be acknowledged when considering our results. To complement our results, comparable studies should be conducted for mature forest stands, including ecophysiological measurements of leaf gas exchange or tree water relations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental and Experimental Botany
Environmental and Experimental Botany 环境科学-环境科学
CiteScore
9.30
自引率
5.30%
发文量
342
审稿时长
26 days
期刊介绍: Environmental and Experimental Botany (EEB) publishes research papers on the physical, chemical, biological, molecular mechanisms and processes involved in the responses of plants to their environment. In addition to research papers, the journal includes review articles. Submission is in agreement with the Editors-in-Chief. The Journal also publishes special issues which are built by invited guest editors and are related to the main themes of EEB. The areas covered by the Journal include: (1) Responses of plants to heavy metals and pollutants (2) Plant/water interactions (salinity, drought, flooding) (3) Responses of plants to radiations ranging from UV-B to infrared (4) Plant/atmosphere relations (ozone, CO2 , temperature) (5) Global change impacts on plant ecophysiology (6) Biotic interactions involving environmental factors.
期刊最新文献
Stable isotope inferred intrinsic water use efficiency and its relation to N sources in temperate tree regeneration with increasing levels of N deposition, precipitation, and temperature Ozone exposure consistently increases δ13C in wheat grain Parental shade stress increases Arabidopsis seed viability by modifying the phenolic hydrophobic barrier in the seed coats Editorial Board The role of Forkhead box O in diabetes mellitus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1