Baki Karaböce , Rauf Hamid , Evren Saban , Hüseyin Sözeri , Erkan Danacı , Ahsen Aydın Böyük , Hüseyin Okan Durmuş , Lev Dorosinskiy , Oğuzhan Kızılbey , Semanur Bilecik , Tuğçe Yazgan , Rabia Hatipzade , Halil İbrahim Battal , Ahmet Baş
{"title":"Comparison of Disinfection of Phi6 Virus Bacteriophage on Fomites by Various Methods and a Prototype for IR Application","authors":"Baki Karaböce , Rauf Hamid , Evren Saban , Hüseyin Sözeri , Erkan Danacı , Ahsen Aydın Böyük , Hüseyin Okan Durmuş , Lev Dorosinskiy , Oğuzhan Kızılbey , Semanur Bilecik , Tuğçe Yazgan , Rabia Hatipzade , Halil İbrahim Battal , Ahmet Baş","doi":"10.1016/j.tsep.2025.103477","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, disinfection methods of Phi6 bacteriophage virus (equivalent of SARS-CoV-2) are presented and compared. Some of these methods are new, some have been retested, and one is cited from literature sources. In addition, the spread of the virus in droplets is theoretically modeled and its spread in air is visualized. Most of the existing virus disinfection methods, including thermal, UV, physical, and chemical, are applied, and new methods as infrared (IR) and microwave (MW)) are proposed, reviewed, and their virus degradation results are presented. The spread of the virus in aerosol and droplets is investigated through Brownian motion simulations using COMSOL software. The virus spread in air is visualized using a powerful laser and a high-speed camera. Comparative studies have been conducted for Far IR (FIR), MW, UV, chemicals, and heating techniques, as it produces therapeutic sunlight effect for disinfection of Phi6 virus bacteriophage.</div><div>The results that were previously published by us showing the effect of reducing the spread of the virus with FIR were briefly given and compared with the MW study results and the applications of UV, chemical and heating results. It was seen that the FIR method stood out as the most economical, harmless, applicable and effective method when compared with other methods through a survey study. According to a previously published paper showing that Phi6 virus bacteriophage was weakened, it was shown that the density of living virus decreased at temperatures about 42 °C and above on fomites. In order to demonstrate and use this effect, surface temperature measurements were performed on surfaces using different materials such as aluminum, wooden, paper, plastic, and tile and the results were used. Then a prototype device that utilizes FIR was developed in the light of current and previous results, tested and presented in this paper.</div></div>","PeriodicalId":23062,"journal":{"name":"Thermal Science and Engineering Progress","volume":"61 ","pages":"Article 103477"},"PeriodicalIF":5.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Science and Engineering Progress","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451904925002677","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, disinfection methods of Phi6 bacteriophage virus (equivalent of SARS-CoV-2) are presented and compared. Some of these methods are new, some have been retested, and one is cited from literature sources. In addition, the spread of the virus in droplets is theoretically modeled and its spread in air is visualized. Most of the existing virus disinfection methods, including thermal, UV, physical, and chemical, are applied, and new methods as infrared (IR) and microwave (MW)) are proposed, reviewed, and their virus degradation results are presented. The spread of the virus in aerosol and droplets is investigated through Brownian motion simulations using COMSOL software. The virus spread in air is visualized using a powerful laser and a high-speed camera. Comparative studies have been conducted for Far IR (FIR), MW, UV, chemicals, and heating techniques, as it produces therapeutic sunlight effect for disinfection of Phi6 virus bacteriophage.
The results that were previously published by us showing the effect of reducing the spread of the virus with FIR were briefly given and compared with the MW study results and the applications of UV, chemical and heating results. It was seen that the FIR method stood out as the most economical, harmless, applicable and effective method when compared with other methods through a survey study. According to a previously published paper showing that Phi6 virus bacteriophage was weakened, it was shown that the density of living virus decreased at temperatures about 42 °C and above on fomites. In order to demonstrate and use this effect, surface temperature measurements were performed on surfaces using different materials such as aluminum, wooden, paper, plastic, and tile and the results were used. Then a prototype device that utilizes FIR was developed in the light of current and previous results, tested and presented in this paper.
期刊介绍:
Thermal Science and Engineering Progress (TSEP) publishes original, high-quality research articles that span activities ranging from fundamental scientific research and discussion of the more controversial thermodynamic theories, to developments in thermal engineering that are in many instances examples of the way scientists and engineers are addressing the challenges facing a growing population – smart cities and global warming – maximising thermodynamic efficiencies and minimising all heat losses. It is intended that these will be of current relevance and interest to industry, academia and other practitioners. It is evident that many specialised journals in thermal and, to some extent, in fluid disciplines tend to focus on topics that can be classified as fundamental in nature, or are ‘applied’ and near-market. Thermal Science and Engineering Progress will bridge the gap between these two areas, allowing authors to make an easy choice, should they or a journal editor feel that their papers are ‘out of scope’ when considering other journals. The range of topics covered by Thermal Science and Engineering Progress addresses the rapid rate of development being made in thermal transfer processes as they affect traditional fields, and important growth in the topical research areas of aerospace, thermal biological and medical systems, electronics and nano-technologies, renewable energy systems, food production (including agriculture), and the need to minimise man-made thermal impacts on climate change. Review articles on appropriate topics for TSEP are encouraged, although until TSEP is fully established, these will be limited in number. Before submitting such articles, please contact one of the Editors, or a member of the Editorial Advisory Board with an outline of your proposal and your expertise in the area of your review.