Yi-yao Mou , Meng-ke Lin , Yu-ying Yang , Yu-kun Kang , Ya-qing Li , Tian-yuan Liu , Chu-zhao Lei , Qing Lin
{"title":"Whole-genome sequences revealed genomic diversity and selection signatures of Dermacentor silvarum in Shaanxi, China","authors":"Yi-yao Mou , Meng-ke Lin , Yu-ying Yang , Yu-kun Kang , Ya-qing Li , Tian-yuan Liu , Chu-zhao Lei , Qing Lin","doi":"10.1016/j.vetpar.2025.110444","DOIUrl":null,"url":null,"abstract":"<div><div><em>Dermacentor silvarum</em> (<em>D. silvarum</em>) is an arthropod that feeds on blood. It is a primary tick species found in northern China that poses a significant security risk to the health and life of the host, as it has the potential to transmit a variety of pathogens to humans and animals. Through ongoing research on tick genome sequences, researchers have successfully assembled and reported reference genomes for numerous tick species. These significant advances have greatly accelerated the study of tick biology and population genomics. <em>D. silvarum</em> samples were obtained from the body surface of free-range goats in Yulin, Shaanxi Province, China. The whole genomes of the samples were resequenced and merged with preexisting data from the National Genomics Data Center database (project ID: PRJCA002242) to analyze the genetic structure, genetic diversity, mitochondrial genetic structure, and selection signatures of <em>D. silvarum</em> in the Shaanxi Province. Based on the available data, the <em>D.silvarum</em> species in China could be classified into two main branches. These populations exhibited low nucleotide diversity. A slight discrepancy was noted between the mitochondrial phylogenetic tree and the autosomal whole-genome phylogenetic tree of <em>D. silvarum</em>, consistent with a previous study. In the selected analysis of <em>D. silvarum</em> in the Shaanxi Province, China, genes linked to immunity, iron storage, fatty acid biosynthesis, pesticide defense, and blood digestion were identified. Leutriene A4 hydrolase (LOC119466376) was also identified, although its function remains unknown. This information is crucial for understanding the biology of <em>D. silvarum</em> and developing management measures.</div></div>","PeriodicalId":23716,"journal":{"name":"Veterinary parasitology","volume":"336 ","pages":"Article 110444"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary parasitology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030440172500055X","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Dermacentor silvarum (D. silvarum) is an arthropod that feeds on blood. It is a primary tick species found in northern China that poses a significant security risk to the health and life of the host, as it has the potential to transmit a variety of pathogens to humans and animals. Through ongoing research on tick genome sequences, researchers have successfully assembled and reported reference genomes for numerous tick species. These significant advances have greatly accelerated the study of tick biology and population genomics. D. silvarum samples were obtained from the body surface of free-range goats in Yulin, Shaanxi Province, China. The whole genomes of the samples were resequenced and merged with preexisting data from the National Genomics Data Center database (project ID: PRJCA002242) to analyze the genetic structure, genetic diversity, mitochondrial genetic structure, and selection signatures of D. silvarum in the Shaanxi Province. Based on the available data, the D.silvarum species in China could be classified into two main branches. These populations exhibited low nucleotide diversity. A slight discrepancy was noted between the mitochondrial phylogenetic tree and the autosomal whole-genome phylogenetic tree of D. silvarum, consistent with a previous study. In the selected analysis of D. silvarum in the Shaanxi Province, China, genes linked to immunity, iron storage, fatty acid biosynthesis, pesticide defense, and blood digestion were identified. Leutriene A4 hydrolase (LOC119466376) was also identified, although its function remains unknown. This information is crucial for understanding the biology of D. silvarum and developing management measures.
期刊介绍:
The journal Veterinary Parasitology has an open access mirror journal,Veterinary Parasitology: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
This journal is concerned with those aspects of helminthology, protozoology and entomology which are of interest to animal health investigators, veterinary practitioners and others with a special interest in parasitology. Papers of the highest quality dealing with all aspects of disease prevention, pathology, treatment, epidemiology, and control of parasites in all domesticated animals, fall within the scope of the journal. Papers of geographically limited (local) interest which are not of interest to an international audience will not be accepted. Authors who submit papers based on local data will need to indicate why their paper is relevant to a broader readership.
Parasitological studies on laboratory animals fall within the scope of the journal only if they provide a reasonably close model of a disease of domestic animals. Additionally the journal will consider papers relating to wildlife species where they may act as disease reservoirs to domestic animals, or as a zoonotic reservoir. Case studies considered to be unique or of specific interest to the journal, will also be considered on occasions at the Editors'' discretion. Papers dealing exclusively with the taxonomy of parasites do not fall within the scope of the journal.