A survey and future outlook on indoor location fingerprinting privacy preservation

IF 4.4 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Computer Networks Pub Date : 2025-03-15 DOI:10.1016/j.comnet.2025.111199
Amir Fathalizadeh , Vahideh Moghtadaiee , Mina Alishahi
{"title":"A survey and future outlook on indoor location fingerprinting privacy preservation","authors":"Amir Fathalizadeh ,&nbsp;Vahideh Moghtadaiee ,&nbsp;Mina Alishahi","doi":"10.1016/j.comnet.2025.111199","DOIUrl":null,"url":null,"abstract":"<div><div>The pervasive integration of Indoor Positioning Systems (IPS) arises from the limitations of Global Navigation Satellite Systems (GNSS) in indoor environments, leading to the widespread adoption of Location-Based Services (LBS) in places such as shopping malls, airports, hospitals, museums, corporate campuses, and smart buildings. Specifically, indoor location fingerprinting (ILF) systems employ diverse signal fingerprints from user devices, enabling precise location identification by Location Service Providers (LSP). Despite its broad applications across various domains, ILF introduces a notable privacy risk, as both LSP and potential adversaries inherently have access to this sensitive information, compromising users’ privacy. Consequently, concerns regarding privacy vulnerabilities in this context necessitate a focused exploration of privacy-preserving mechanisms. In response to these concerns, this survey presents a comprehensive review of Indoor Location Fingerprinting Privacy-Preserving Mechanisms (ILFPPM) based on cryptographic, anonymization, differential privacy (DP), and federated learning (FL) techniques. We also propose a distinctive and novel grouping of privacy vulnerabilities, adversary models, privacy attacks, and evaluation metrics specific to ILF systems. Given the identified limitations and research gaps in this survey, we highlight numerous prospective opportunities for future investigation, aiming to motivate researchers interested in advancing ILF systems. This survey constitutes a valuable reference for researchers and provides a clear overview for those beyond this specific research domain. To further help the researchers, we have created an online resource repository, which can be found at <span><span>https://github.com/amir-ftlz/ilfppm</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":"262 ","pages":"Article 111199"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389128625001677","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

The pervasive integration of Indoor Positioning Systems (IPS) arises from the limitations of Global Navigation Satellite Systems (GNSS) in indoor environments, leading to the widespread adoption of Location-Based Services (LBS) in places such as shopping malls, airports, hospitals, museums, corporate campuses, and smart buildings. Specifically, indoor location fingerprinting (ILF) systems employ diverse signal fingerprints from user devices, enabling precise location identification by Location Service Providers (LSP). Despite its broad applications across various domains, ILF introduces a notable privacy risk, as both LSP and potential adversaries inherently have access to this sensitive information, compromising users’ privacy. Consequently, concerns regarding privacy vulnerabilities in this context necessitate a focused exploration of privacy-preserving mechanisms. In response to these concerns, this survey presents a comprehensive review of Indoor Location Fingerprinting Privacy-Preserving Mechanisms (ILFPPM) based on cryptographic, anonymization, differential privacy (DP), and federated learning (FL) techniques. We also propose a distinctive and novel grouping of privacy vulnerabilities, adversary models, privacy attacks, and evaluation metrics specific to ILF systems. Given the identified limitations and research gaps in this survey, we highlight numerous prospective opportunities for future investigation, aiming to motivate researchers interested in advancing ILF systems. This survey constitutes a valuable reference for researchers and provides a clear overview for those beyond this specific research domain. To further help the researchers, we have created an online resource repository, which can be found at https://github.com/amir-ftlz/ilfppm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer Networks
Computer Networks 工程技术-电信学
CiteScore
10.80
自引率
3.60%
发文量
434
审稿时长
8.6 months
期刊介绍: Computer Networks is an international, archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in the computer communications networking area. The audience includes researchers, managers and operators of networks as well as designers and implementors. The Editorial Board will consider any material for publication that is of interest to those groups.
期刊最新文献
Quantum-resistant ring signature-based authentication scheme against secret key exposure for VANETs Collision avoidance by mitigating uncertain packet loss in multi-hop wireless IoT networks Machine learning approaches for active queue management: A survey, taxonomy, and future directions A survey and future outlook on indoor location fingerprinting privacy preservation Enhancing IoT security: A competitive coevolutionary strategy for detecting RPL attacks in challenging attack environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1