A review on intrusion detection datasets: tools, processes, and features

IF 4.4 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Computer Networks Pub Date : 2025-03-13 DOI:10.1016/j.comnet.2025.111177
Daniela Pinto , Ivone Amorim , Eva Maia , Isabel Praça
{"title":"A review on intrusion detection datasets: tools, processes, and features","authors":"Daniela Pinto ,&nbsp;Ivone Amorim ,&nbsp;Eva Maia ,&nbsp;Isabel Praça","doi":"10.1016/j.comnet.2025.111177","DOIUrl":null,"url":null,"abstract":"<div><div>Network intrusion detection systems are fundamental to the early detection of anomalous behaviour in networks. Modern versions of these tools take advantage of Machine Learning to process large amounts of data, identify patterns, and make predictions. Their development relies on the ability to access good historical network data. Therefore, the research community has been actively working on creating new datasets, and network traffic analysis tools are frequently used in this context. This study provides a comprehensive review of existing tools for network traffic analysis, highlighting their main advantages and drawbacks. A categorisation for these tools is introduced, as well as an overview of the dataset creation process by combining one or more of these categories. An updated analysis of existing datasets is also provided, along with details regarding their creation, highlighting the progression in dataset production. Finally, the impact of dataset features is discussed, underscoring their role in enhancing the effectiveness of network intrusion detection systems.</div></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":"262 ","pages":"Article 111177"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389128625001458","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Network intrusion detection systems are fundamental to the early detection of anomalous behaviour in networks. Modern versions of these tools take advantage of Machine Learning to process large amounts of data, identify patterns, and make predictions. Their development relies on the ability to access good historical network data. Therefore, the research community has been actively working on creating new datasets, and network traffic analysis tools are frequently used in this context. This study provides a comprehensive review of existing tools for network traffic analysis, highlighting their main advantages and drawbacks. A categorisation for these tools is introduced, as well as an overview of the dataset creation process by combining one or more of these categories. An updated analysis of existing datasets is also provided, along with details regarding their creation, highlighting the progression in dataset production. Finally, the impact of dataset features is discussed, underscoring their role in enhancing the effectiveness of network intrusion detection systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer Networks
Computer Networks 工程技术-电信学
CiteScore
10.80
自引率
3.60%
发文量
434
审稿时长
8.6 months
期刊介绍: Computer Networks is an international, archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in the computer communications networking area. The audience includes researchers, managers and operators of networks as well as designers and implementors. The Editorial Board will consider any material for publication that is of interest to those groups.
期刊最新文献
Quantum-resistant ring signature-based authentication scheme against secret key exposure for VANETs Collision avoidance by mitigating uncertain packet loss in multi-hop wireless IoT networks Machine learning approaches for active queue management: A survey, taxonomy, and future directions A survey and future outlook on indoor location fingerprinting privacy preservation Enhancing IoT security: A competitive coevolutionary strategy for detecting RPL attacks in challenging attack environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1