Conservation agriculture improves the balance between beneficial free-living and plant-parasitic nematodes for low-input rainfed rice crop

IF 5 2区 农林科学 Q1 SOIL SCIENCE Applied Soil Ecology Pub Date : 2025-03-17 DOI:10.1016/j.apsoil.2025.106029
Marie Sauvadet , Patrice Autfray , Antsa Rafenomanjato , Aude Ripoche , Jean Trap
{"title":"Conservation agriculture improves the balance between beneficial free-living and plant-parasitic nematodes for low-input rainfed rice crop","authors":"Marie Sauvadet ,&nbsp;Patrice Autfray ,&nbsp;Antsa Rafenomanjato ,&nbsp;Aude Ripoche ,&nbsp;Jean Trap","doi":"10.1016/j.apsoil.2025.106029","DOIUrl":null,"url":null,"abstract":"<div><div>Conservation agriculture systems leaning on living mulch show particular promise thanks to their benefits on soil biological activity, but weed pressure in these cropping systems strongly depends on the amount of mulch. To assess the ability of these cropping systems to sustain soil health considering pest regulation, we investigated the combined influence of tillage and crop management (conventional, CONV and no-tillage with living mulch, NTLM) and weeding regimes (weekly hand-weeding and none) on soil free-living and plant-parasitic nematodes. To do so, we leant on a split-plot field experiment in Madagascar highlands 7 years after crop establishment. Overall, the abundance of soil free-living nematodes was 3.9 times higher in NTLM than CONV, primarily due to a preferential increase in fungal-feeders (+585 %) and in omnivores and predators (+633 %). Conversely, plant-parasitic nematodes had the same abundance in both systems, but not the same taxonomic composition, with a dominance of endoparasitic taxa in CONV, and of ectoparasitic taxa in NTLM. Weeding management affected only populations in NTLM, leading to increased abundance of fungal-feeders (+191 %) and lower abundance of semi-endoparasites (−89 %) in the unweeded systems, which were associated with changes in plant community diversity. In this context, conservation agriculture and no-weeding proved beneficial for promoting free-living nematode communities but also to decrease the overall plant parasitic pressure through plant diversification. As no weeding may nonetheless affect crop yield, a trade-off has therefore to be found to promote soil ecosystem services while maintaining crop production.</div></div>","PeriodicalId":8099,"journal":{"name":"Applied Soil Ecology","volume":"209 ","pages":"Article 106029"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soil Ecology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0929139325001672","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Conservation agriculture systems leaning on living mulch show particular promise thanks to their benefits on soil biological activity, but weed pressure in these cropping systems strongly depends on the amount of mulch. To assess the ability of these cropping systems to sustain soil health considering pest regulation, we investigated the combined influence of tillage and crop management (conventional, CONV and no-tillage with living mulch, NTLM) and weeding regimes (weekly hand-weeding and none) on soil free-living and plant-parasitic nematodes. To do so, we leant on a split-plot field experiment in Madagascar highlands 7 years after crop establishment. Overall, the abundance of soil free-living nematodes was 3.9 times higher in NTLM than CONV, primarily due to a preferential increase in fungal-feeders (+585 %) and in omnivores and predators (+633 %). Conversely, plant-parasitic nematodes had the same abundance in both systems, but not the same taxonomic composition, with a dominance of endoparasitic taxa in CONV, and of ectoparasitic taxa in NTLM. Weeding management affected only populations in NTLM, leading to increased abundance of fungal-feeders (+191 %) and lower abundance of semi-endoparasites (−89 %) in the unweeded systems, which were associated with changes in plant community diversity. In this context, conservation agriculture and no-weeding proved beneficial for promoting free-living nematode communities but also to decrease the overall plant parasitic pressure through plant diversification. As no weeding may nonetheless affect crop yield, a trade-off has therefore to be found to promote soil ecosystem services while maintaining crop production.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
保护性农业改善了低投入雨养水稻作物中有益的自由生活和植物寄生线虫之间的平衡
依赖于活地膜的保护性农业系统由于其对土壤生物活动的好处而显示出特别的前景,但这些种植系统中的杂草压力很大程度上取决于地膜的数量。为了评估这些耕作制度在考虑病虫害调控的情况下维持土壤健康的能力,我们调查了耕作和作物管理(常规、免耕和免耕加活膜、NTLM)和除草制度(每周手工除草和不除草)对土壤自由生活线虫和植物寄生线虫的综合影响。为此,我们在作物种植7年后,在马达加斯加高地进行了分块田间试验。总体而言,NTLM土壤中游离线虫的丰度比CONV高3.9倍,主要是由于食真菌者(+ 585%)和杂食动物和捕食者(+ 633%)优先增加。相反,植物寄生线虫在两个系统中丰度相同,但分类组成不同,在CONV中以内寄生类群占优势,在NTLM中以外寄生类群占优势。除草管理只影响NTLM的种群,导致未除草系统中真菌取食者的丰度增加(+ 191%),半内寄生虫的丰度降低(- 89%),这与植物群落多样性的变化有关。在这种情况下,保护性农业和不除草被证明有利于促进自由生活的线虫群落,并通过植物多样化减少总体植物寄生压力。由于不除草可能会影响作物产量,因此必须找到一种平衡,在保持作物产量的同时促进土壤生态系统服务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Soil Ecology
Applied Soil Ecology 农林科学-土壤科学
CiteScore
9.70
自引率
4.20%
发文量
363
审稿时长
5.3 months
期刊介绍: Applied Soil Ecology addresses the role of soil organisms and their interactions in relation to: sustainability and productivity, nutrient cycling and other soil processes, the maintenance of soil functions, the impact of human activities on soil ecosystems and bio(techno)logical control of soil-inhabiting pests, diseases and weeds.
期刊最新文献
Oomycete pathogens suppress litter decomposition in alpine meadow soils Three decades of green manure rotations sustain soil nitrogen supply by microbial functional restructuring under reduced mineral fertilization Microbial drivers of dynamic soil carbon use efficiency following long-term vegetation succession on the Loess Plateau, China Nitrogen addition and expansion of Ligularia virgaurea drive decoupling between ammonia and nitrite oxidation Arbuscular mycorrhizal fungi and bacterial communities across selective logging, low-flooded forest and conserved Mayan Forest
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1