Deciphering the mechanism of Annona muricata leaf extract in alloxan-nicotinamide-induced diabetic rat model with 1H-NMR-based metabolomics approach

IF 3.1 3区 医学 Q2 CHEMISTRY, ANALYTICAL Journal of pharmaceutical and biomedical analysis Pub Date : 2025-03-12 DOI:10.1016/j.jpba.2025.116806
Siti Norliyana Zubaidi , Pei Lou Wong , Wasim S.M. Qadi , Esraa Adnan Dawoud Dawoud , Hamizah Shahirah Hamezah , Syarul Nataqain Baharum , Faidruz Azura Jam , Faridah Abas , Andres Moreno , Ahmed Mediani
{"title":"Deciphering the mechanism of Annona muricata leaf extract in alloxan-nicotinamide-induced diabetic rat model with 1H-NMR-based metabolomics approach","authors":"Siti Norliyana Zubaidi ,&nbsp;Pei Lou Wong ,&nbsp;Wasim S.M. Qadi ,&nbsp;Esraa Adnan Dawoud Dawoud ,&nbsp;Hamizah Shahirah Hamezah ,&nbsp;Syarul Nataqain Baharum ,&nbsp;Faidruz Azura Jam ,&nbsp;Faridah Abas ,&nbsp;Andres Moreno ,&nbsp;Ahmed Mediani","doi":"10.1016/j.jpba.2025.116806","DOIUrl":null,"url":null,"abstract":"<div><div>The leaves of <em>Annona muricata</em> Linn. have long been utilized in traditional medicine for diabetes treatment, and there is no study that has employed a metabolomics approach to investigate the plant's effects in managing the disease. We aimed to explore the antidiabetic effects of the standardised <em>A. muricata</em> leaf extract on diabetes-induced rats by alloxan monohydrate (Ax) and nicotinamide (NA) using a proton nuclear magnetic resonance (¹H-NMR)-based metabolomics approach. Absolute quantification was performed on the leaf extract using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Two different doses of the extract were administered orally for four weeks to diabetic rats induced with Ax + NA, and physical evaluations, biochemical analyses, and ¹H-NMR metabolomics of urine and serum were assessed. The results showed that quercetin 3-rutinoside was the most abundant compound in the 80 % ethanolic extract of <em>A. muricata</em> leaf. The induction of type 2 diabetes mellitus (T2DM) in the rat model was confirmed by the clear metabolic distinction between normal rats, diabetic rats, and metformin-treated diabetic rats. The low-dose of <em>A. muricata</em> leaf extract (200 mg/kg) was found to exhibit better results, significantly reducing serum urea levels in diabetic rats, with effects comparable to those of metformin. Additionally, metabolite analysis from ¹H-NMR metabolomics of serum and urine showed a slight shift toward normal metabolic profiles in the treated diabetic rats. Pathway analysis revealed alterations in the tricarboxylic acid cycle (TCA), pyruvate metabolism, and glycolysis/gluconeogenesis pathways in the diabetic rat model, which were improved following treatment with the <em>A. muricata</em> leaf extract. Overall, this study provides scientific support for its traditional use in diabetes management and offers new insights into the underlying molecular mechanisms.</div></div>","PeriodicalId":16685,"journal":{"name":"Journal of pharmaceutical and biomedical analysis","volume":"260 ","pages":"Article 116806"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical and biomedical analysis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0731708525001475","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The leaves of Annona muricata Linn. have long been utilized in traditional medicine for diabetes treatment, and there is no study that has employed a metabolomics approach to investigate the plant's effects in managing the disease. We aimed to explore the antidiabetic effects of the standardised A. muricata leaf extract on diabetes-induced rats by alloxan monohydrate (Ax) and nicotinamide (NA) using a proton nuclear magnetic resonance (¹H-NMR)-based metabolomics approach. Absolute quantification was performed on the leaf extract using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Two different doses of the extract were administered orally for four weeks to diabetic rats induced with Ax + NA, and physical evaluations, biochemical analyses, and ¹H-NMR metabolomics of urine and serum were assessed. The results showed that quercetin 3-rutinoside was the most abundant compound in the 80 % ethanolic extract of A. muricata leaf. The induction of type 2 diabetes mellitus (T2DM) in the rat model was confirmed by the clear metabolic distinction between normal rats, diabetic rats, and metformin-treated diabetic rats. The low-dose of A. muricata leaf extract (200 mg/kg) was found to exhibit better results, significantly reducing serum urea levels in diabetic rats, with effects comparable to those of metformin. Additionally, metabolite analysis from ¹H-NMR metabolomics of serum and urine showed a slight shift toward normal metabolic profiles in the treated diabetic rats. Pathway analysis revealed alterations in the tricarboxylic acid cycle (TCA), pyruvate metabolism, and glycolysis/gluconeogenesis pathways in the diabetic rat model, which were improved following treatment with the A. muricata leaf extract. Overall, this study provides scientific support for its traditional use in diabetes management and offers new insights into the underlying molecular mechanisms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.70
自引率
5.90%
发文量
588
审稿时长
37 days
期刊介绍: This journal is an international medium directed towards the needs of academic, clinical, government and industrial analysis by publishing original research reports and critical reviews on pharmaceutical and biomedical analysis. It covers the interdisciplinary aspects of analysis in the pharmaceutical, biomedical and clinical sciences, including developments in analytical methodology, instrumentation, computation and interpretation. Submissions on novel applications focusing on drug purity and stability studies, pharmacokinetics, therapeutic monitoring, metabolic profiling; drug-related aspects of analytical biochemistry and forensic toxicology; quality assurance in the pharmaceutical industry are also welcome. Studies from areas of well established and poorly selective methods, such as UV-VIS spectrophotometry (including derivative and multi-wavelength measurements), basic electroanalytical (potentiometric, polarographic and voltammetric) methods, fluorimetry, flow-injection analysis, etc. are accepted for publication in exceptional cases only, if a unique and substantial advantage over presently known systems is demonstrated. The same applies to the assay of simple drug formulations by any kind of methods and the determination of drugs in biological samples based merely on spiked samples. Drug purity/stability studies should contain information on the structure elucidation of the impurities/degradants.
期刊最新文献
Deciphering the mechanism of Annona muricata leaf extract in alloxan-nicotinamide-induced diabetic rat model with 1H-NMR-based metabolomics approach Editorial Board The cutting edge of surveillance: Exploring high-resolution mass spectrometry in wastewater-based epidemiology for monitoring forensic samples Impact of ultralow oxygen preservation on the quality of Atractylodis Macrocephalae Rhizoma evaluated by multi-chromatographic determination of small molecules and polysaccharides Reverse traceability analysis of estrogenic active ingredients in Cuscutae semen based on intestinal and hepatic metabolism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1