Paramagnetic relaxation: Direct and Raman relaxation of spin S=12

W.Th. Wenckebach
{"title":"Paramagnetic relaxation: Direct and Raman relaxation of spin S=12","authors":"W.Th. Wenckebach","doi":"10.1016/j.jmro.2025.100193","DOIUrl":null,"url":null,"abstract":"<div><div>Paramagnetic relaxation in solids is a vast subject, about as vast as the range of manifestations of electron spin in matter. It is a complex subject as well: it is the interface between paramagnetic centres – be it transition metal ions, radicals or defects – and quantized vibrations: phonons. So it requires an understanding of both these phonons and those paramagnetic centres. Moreover, contrary to the case of integer spin, for half-integer spin the coupling between electron spins and phonons is indirect. Two interactions are needed, the spin–orbit interaction between the spin and the orbits of the paramagnetic centre and the orbit–phonon interaction between the latter and the phonons.</div><div>The present article is an effort to navigate the theory of this extensive subject for spin <span><math><mrow><mi>S</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span> and aims to derive the main properties of the two most important mechanisms: direct and red Raman relaxation. It tries to do so from first principles, that is, it includes a generalized, but fundamental description of the vibrational states, the orbital and spin states on the one hand, and the orbit–phonon and spin–orbit interaction on the other. Based on these descriptions it derives the transition matrix elements responsible for paramagnetic relaxation, following the original approach of Van Vleck for paramagnetic centres with spin <span><math><mrow><mi>S</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span>, a relatively weak spin–orbit interaction and embedded in an insulating, diamagnetic solid. Subsequently phonon statistics are included to derive the paramagnetic relaxation rates. No effort is done to review the vast body of experimental work on the subject.</div></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"23 ","pages":"Article 100193"},"PeriodicalIF":2.6240,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetic Resonance Open","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666441025000093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Paramagnetic relaxation in solids is a vast subject, about as vast as the range of manifestations of electron spin in matter. It is a complex subject as well: it is the interface between paramagnetic centres – be it transition metal ions, radicals or defects – and quantized vibrations: phonons. So it requires an understanding of both these phonons and those paramagnetic centres. Moreover, contrary to the case of integer spin, for half-integer spin the coupling between electron spins and phonons is indirect. Two interactions are needed, the spin–orbit interaction between the spin and the orbits of the paramagnetic centre and the orbit–phonon interaction between the latter and the phonons.
The present article is an effort to navigate the theory of this extensive subject for spin S=12 and aims to derive the main properties of the two most important mechanisms: direct and red Raman relaxation. It tries to do so from first principles, that is, it includes a generalized, but fundamental description of the vibrational states, the orbital and spin states on the one hand, and the orbit–phonon and spin–orbit interaction on the other. Based on these descriptions it derives the transition matrix elements responsible for paramagnetic relaxation, following the original approach of Van Vleck for paramagnetic centres with spin S=12, a relatively weak spin–orbit interaction and embedded in an insulating, diamagnetic solid. Subsequently phonon statistics are included to derive the paramagnetic relaxation rates. No effort is done to review the vast body of experimental work on the subject.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
固体中的顺磁弛豫是一个庞大的课题,其范围与物质中电子自旋的表现形式一样庞大。它也是一个复杂的课题:它是顺磁性中心(无论是过渡金属离子、自由基还是缺陷)与量化振动(声子)之间的界面。因此,需要同时了解这些声子和顺磁中心。此外,与整数自旋的情况相反,对于半整数自旋,电子自旋与声子之间的耦合是间接的。本文旨在为自旋 S=12 的这一广泛课题的理论导航,并旨在推导出两种最重要机制的主要特性:直接拉曼弛豫和红色拉曼弛豫。文章试图从第一原理出发,即包括对振动状态、轨道和自旋状态以及轨道-声子和自旋-轨道相互作用的概括性但基本的描述。在这些描述的基础上,它按照范-弗莱克(Van Vleck)针对自旋 S=12 的顺磁中心、相对较弱的自旋轨道相互作用和嵌入绝缘二磁固体的原始方法,推导出了顺磁弛豫的过渡矩阵元素。随后加入声子统计,得出顺磁弛豫率。没有对有关这一主题的大量实验工作进行回顾。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
0
期刊最新文献
Paramagnetic relaxation: Direct and Raman relaxation of spin S=12 Ultrafast 2D benchtop NMR spectroscopy enhanced by flow Overhauser dynamic nuclear polarization Probing nanoparticle proximity effects on selective butadiene hydrogenation over Pd-Au/TiO2 with parahydrogen-induced polarization NMR Robotic arms for hyperpolarization-enhanced NMR Tribute to Alexander Pines (1945-2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1