{"title":"Un-evaluated solutions may be valuable in expensive optimization","authors":"Hao Hao , Xiaoqun Zhang , Aimin Zhou","doi":"10.1016/j.swevo.2025.101905","DOIUrl":null,"url":null,"abstract":"<div><div>Expensive optimization problems (EOPs) are prevalent in real-world applications, where the evaluation of a single solution requires a significant amount of resources. In our study of surrogate-assisted evolutionary algorithms (SAEAs) in EOPs, we discovered an intriguing phenomenon. Because only a limited number of solutions are evaluated in each iteration, relying solely on these evaluated solutions for evolution can lead to reduced disparity in successive populations. This, in turn, hampers the reproduction operators’ ability to generate superior solutions, thereby reducing the algorithm’s convergence speed. To address this issue, we propose a strategic approach that incorporates high-quality, un-evaluated solutions predicted by surrogate models during the selection phase. This approach aims to improve the distribution of evaluated solutions, thereby generating a superior next generation of solutions. This work details specific implementations of this concept across various reproduction operators and validates its effectiveness using multiple surrogate models. Experimental results demonstrate that the proposed strategy significantly enhances the performance of surrogate-assisted evolutionary algorithms. Compared to mainstream SAEAs and Bayesian optimization algorithms, our approach incorporating the un-evaluated solution strategy shows a marked improvement.</div></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"94 ","pages":"Article 101905"},"PeriodicalIF":8.2000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221065022500063X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Expensive optimization problems (EOPs) are prevalent in real-world applications, where the evaluation of a single solution requires a significant amount of resources. In our study of surrogate-assisted evolutionary algorithms (SAEAs) in EOPs, we discovered an intriguing phenomenon. Because only a limited number of solutions are evaluated in each iteration, relying solely on these evaluated solutions for evolution can lead to reduced disparity in successive populations. This, in turn, hampers the reproduction operators’ ability to generate superior solutions, thereby reducing the algorithm’s convergence speed. To address this issue, we propose a strategic approach that incorporates high-quality, un-evaluated solutions predicted by surrogate models during the selection phase. This approach aims to improve the distribution of evaluated solutions, thereby generating a superior next generation of solutions. This work details specific implementations of this concept across various reproduction operators and validates its effectiveness using multiple surrogate models. Experimental results demonstrate that the proposed strategy significantly enhances the performance of surrogate-assisted evolutionary algorithms. Compared to mainstream SAEAs and Bayesian optimization algorithms, our approach incorporating the un-evaluated solution strategy shows a marked improvement.
期刊介绍:
Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.