A cooperative discrete artificial bee colony algorithm with Q-learning for solving the distributed permutation flowshop group scheduling problem with preventive maintenance

IF 8.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Swarm and Evolutionary Computation Pub Date : 2025-03-19 DOI:10.1016/j.swevo.2025.101910
Wan-Zhong Wu , Hong-Yan Sang , Quan Ke Pan , Qiu-Yang Han , Heng-Wei Guo
{"title":"A cooperative discrete artificial bee colony algorithm with Q-learning for solving the distributed permutation flowshop group scheduling problem with preventive maintenance","authors":"Wan-Zhong Wu ,&nbsp;Hong-Yan Sang ,&nbsp;Quan Ke Pan ,&nbsp;Qiu-Yang Han ,&nbsp;Heng-Wei Guo","doi":"10.1016/j.swevo.2025.101910","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid development of manufacturing technology, the multi-factory production considering group-based job processing and machine maintenance is being given increased focus, due to its potential for enhancing cost efficiency and productivity. Group constraints and machine maintenance play a critical role in modern manufacturing by reducing machine downtime, balancing production loads, and extending equipment lifespan. This paper studies the distributed permutation flowshop group scheduling problem with preventive maintenance (DPFGSP/PM) by proposing a cooperative discrete artificial bee colony (CDABC) algorithm, which is based on cooperative strategy, with the objective of minimizing the total flow time (TFT). A novel heuristic based on the group scheduling principles and TFT optimization is introduced in the initialization phase. In the evolutionary phase, the decomposition strategy and the Q-learning strategy are applied to evolve the populations of jobs and groups. Subsequently, these populations are merged to construct the complete solution, and the evaluation criterion is used to determine whether to expand the solution space. Extensive computational experiments and comparisons with state-of-the-art algorithms demonstrate that the proposed CDABC algorithm is an effective solution for DPFGSP/PM.</div></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"95 ","pages":"Article 101910"},"PeriodicalIF":8.2000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650225000689","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid development of manufacturing technology, the multi-factory production considering group-based job processing and machine maintenance is being given increased focus, due to its potential for enhancing cost efficiency and productivity. Group constraints and machine maintenance play a critical role in modern manufacturing by reducing machine downtime, balancing production loads, and extending equipment lifespan. This paper studies the distributed permutation flowshop group scheduling problem with preventive maintenance (DPFGSP/PM) by proposing a cooperative discrete artificial bee colony (CDABC) algorithm, which is based on cooperative strategy, with the objective of minimizing the total flow time (TFT). A novel heuristic based on the group scheduling principles and TFT optimization is introduced in the initialization phase. In the evolutionary phase, the decomposition strategy and the Q-learning strategy are applied to evolve the populations of jobs and groups. Subsequently, these populations are merged to construct the complete solution, and the evaluation criterion is used to determine whether to expand the solution space. Extensive computational experiments and comparisons with state-of-the-art algorithms demonstrate that the proposed CDABC algorithm is an effective solution for DPFGSP/PM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Swarm and Evolutionary Computation
Swarm and Evolutionary Computation COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
16.00
自引率
12.00%
发文量
169
期刊介绍: Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.
期刊最新文献
A cooperative discrete artificial bee colony algorithm with Q-learning for solving the distributed permutation flowshop group scheduling problem with preventive maintenance An efficient history-guided surrogate models-assisted niching evolutionary algorithm for expensive multimodal optimization Parrot optimization algorithm for improved multi-strategy fusion for feature optimization of data in medical and industrial field Hierarchical multi-objective optimization for precise performance design of closed-chain legged mechanisms Un-evaluated solutions may be valuable in expensive optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1