A cooperative discrete artificial bee colony algorithm with Q-learning for solving the distributed permutation flowshop group scheduling problem with preventive maintenance
Wan-Zhong Wu , Hong-Yan Sang , Quan Ke Pan , Qiu-Yang Han , Heng-Wei Guo
{"title":"A cooperative discrete artificial bee colony algorithm with Q-learning for solving the distributed permutation flowshop group scheduling problem with preventive maintenance","authors":"Wan-Zhong Wu , Hong-Yan Sang , Quan Ke Pan , Qiu-Yang Han , Heng-Wei Guo","doi":"10.1016/j.swevo.2025.101910","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid development of manufacturing technology, the multi-factory production considering group-based job processing and machine maintenance is being given increased focus, due to its potential for enhancing cost efficiency and productivity. Group constraints and machine maintenance play a critical role in modern manufacturing by reducing machine downtime, balancing production loads, and extending equipment lifespan. This paper studies the distributed permutation flowshop group scheduling problem with preventive maintenance (DPFGSP/PM) by proposing a cooperative discrete artificial bee colony (CDABC) algorithm, which is based on cooperative strategy, with the objective of minimizing the total flow time (TFT). A novel heuristic based on the group scheduling principles and TFT optimization is introduced in the initialization phase. In the evolutionary phase, the decomposition strategy and the Q-learning strategy are applied to evolve the populations of jobs and groups. Subsequently, these populations are merged to construct the complete solution, and the evaluation criterion is used to determine whether to expand the solution space. Extensive computational experiments and comparisons with state-of-the-art algorithms demonstrate that the proposed CDABC algorithm is an effective solution for DPFGSP/PM.</div></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"95 ","pages":"Article 101910"},"PeriodicalIF":8.2000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650225000689","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid development of manufacturing technology, the multi-factory production considering group-based job processing and machine maintenance is being given increased focus, due to its potential for enhancing cost efficiency and productivity. Group constraints and machine maintenance play a critical role in modern manufacturing by reducing machine downtime, balancing production loads, and extending equipment lifespan. This paper studies the distributed permutation flowshop group scheduling problem with preventive maintenance (DPFGSP/PM) by proposing a cooperative discrete artificial bee colony (CDABC) algorithm, which is based on cooperative strategy, with the objective of minimizing the total flow time (TFT). A novel heuristic based on the group scheduling principles and TFT optimization is introduced in the initialization phase. In the evolutionary phase, the decomposition strategy and the Q-learning strategy are applied to evolve the populations of jobs and groups. Subsequently, these populations are merged to construct the complete solution, and the evaluation criterion is used to determine whether to expand the solution space. Extensive computational experiments and comparisons with state-of-the-art algorithms demonstrate that the proposed CDABC algorithm is an effective solution for DPFGSP/PM.
期刊介绍:
Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.