Enhancing understanding of 3D rectangular tunnel heading stability in c-φ soils with surcharge loading: A comprehensive FELA analysis using three stability factors and machine learning

Suraparb Keawsawasvong , Jim Shiau , Nhat Tan Duong , Thanachon Promwichai , Rungkhun Banyong , Van Qui Lai
{"title":"Enhancing understanding of 3D rectangular tunnel heading stability in c-φ soils with surcharge loading: A comprehensive FELA analysis using three stability factors and machine learning","authors":"Suraparb Keawsawasvong ,&nbsp;Jim Shiau ,&nbsp;Nhat Tan Duong ,&nbsp;Thanachon Promwichai ,&nbsp;Rungkhun Banyong ,&nbsp;Van Qui Lai","doi":"10.1016/j.aiig.2025.100111","DOIUrl":null,"url":null,"abstract":"<div><div>This study examines the stability of three-dimensional rectangular tunnel headings in drained <em>c-ϕ</em> soils, incorporating surcharge effects using 3D Finite Element Limit Analysis (FELA). It focuses on the upper and lower bound solutions for three stability factors: cohesion, surcharge, and soil unit weight (Nc, Ns, and Nγ). Based on Terzaghi's principle of superposition, the analysis evaluates tunnel stability under varying parameters, such as cover-depth ratio (<em>H/D</em>), width-depth ratio (<em>B/D</em>), and friction angle (<em>ϕ</em>). The results align closely with previous studies, and practical design charts are provided for calculating minimum support pressures. Additionally, machine learning models (ANN and XGBoost) are used to develop accurate correlations between input parameters and stability results. A relative importance index analysis is conducted to assess the impact of these parameters. This research enhances understanding of tunnel stability and offers practical insights for tunnel design.</div></div>","PeriodicalId":100124,"journal":{"name":"Artificial Intelligence in Geosciences","volume":"6 1","pages":"Article 100111"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666544125000073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines the stability of three-dimensional rectangular tunnel headings in drained c-ϕ soils, incorporating surcharge effects using 3D Finite Element Limit Analysis (FELA). It focuses on the upper and lower bound solutions for three stability factors: cohesion, surcharge, and soil unit weight (Nc, Ns, and Nγ). Based on Terzaghi's principle of superposition, the analysis evaluates tunnel stability under varying parameters, such as cover-depth ratio (H/D), width-depth ratio (B/D), and friction angle (ϕ). The results align closely with previous studies, and practical design charts are provided for calculating minimum support pressures. Additionally, machine learning models (ANN and XGBoost) are used to develop accurate correlations between input parameters and stability results. A relative importance index analysis is conducted to assess the impact of these parameters. This research enhances understanding of tunnel stability and offers practical insights for tunnel design.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
加强对具有附加荷载的 c-φ 土层中三维矩形隧道顶稳定性的理解:利用三个稳定因子和机器学习进行综合 FELA 分析
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
期刊最新文献
Enhancing understanding of 3D rectangular tunnel heading stability in c-φ soils with surcharge loading: A comprehensive FELA analysis using three stability factors and machine learning Microseismic moment tensor inversion based on ResNet model Innovative cone resistance and sleeve friction prediction from geophysics based on a coupled geo-statistical and machine learning process Robust low frequency seismic bandwidth extension with a U-net and synthetic training data Applying deep learning to teleseismic phase detection and picking: PcP and PKiKP cases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1