Xiangyan Mo , Fangxue Hang , Er-Fang Ren , Lili Gai , Kai Li , Debao Niu
{"title":"Insight into the mechanism of efficient extraction of tea saponins from Camellia oleifera shells using deep eutectic solvents","authors":"Xiangyan Mo , Fangxue Hang , Er-Fang Ren , Lili Gai , Kai Li , Debao Niu","doi":"10.1016/j.ifset.2025.104001","DOIUrl":null,"url":null,"abstract":"<div><div><em>Camellia oleifera</em> (<em>C. oleifera</em>) shells, a major by-product of the camellia oil industry, are rich in tea saponins. The efficient extraction and characterization of tea saponins from <em>C. oleifera</em> shells using deep eutectic solvents (DESs) were investigated, with the extraction mechanism further explored through scanning electron microscopy (SEM) and molecular dynamics simulations. A total of 24 different types of DESs were prepared, with the optimal DES identified as a combination of L-proline and acetamide (the molar ratio of 1:4). Response surface methodology (RSM) optimization revealed that the maximum yield of tea saponins extraction reached 22.46 %. 18 kinds of tea saponin monomers were identified by ultrahigh-performance liquid chromatography coupled with quadrupole-orbitrap high-resolution mass spectrometry (UPLC-Q-Orbitrap HRMS). SEM analysis showed that DESs effectively disrupted the surface structure of <em>C. oleifera</em> shell. Furthermore, molecular dynamics simulations demonstrated the high extraction efficiency of DESs was due to their larger solvent accessible surface area (SASA), increased number of hydrogen bonds, extended hydrogen bond lifetime, and lower intermolecular interaction energy between DESs and tea saponins. These findings provide new insights into the extraction mechanism and contribute to the optimization of DES-based extraction techniques for bioactive compounds from natural plant sources.</div></div>","PeriodicalId":329,"journal":{"name":"Innovative Food Science & Emerging Technologies","volume":"102 ","pages":"Article 104001"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innovative Food Science & Emerging Technologies","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1466856425000852","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Camellia oleifera (C. oleifera) shells, a major by-product of the camellia oil industry, are rich in tea saponins. The efficient extraction and characterization of tea saponins from C. oleifera shells using deep eutectic solvents (DESs) were investigated, with the extraction mechanism further explored through scanning electron microscopy (SEM) and molecular dynamics simulations. A total of 24 different types of DESs were prepared, with the optimal DES identified as a combination of L-proline and acetamide (the molar ratio of 1:4). Response surface methodology (RSM) optimization revealed that the maximum yield of tea saponins extraction reached 22.46 %. 18 kinds of tea saponin monomers were identified by ultrahigh-performance liquid chromatography coupled with quadrupole-orbitrap high-resolution mass spectrometry (UPLC-Q-Orbitrap HRMS). SEM analysis showed that DESs effectively disrupted the surface structure of C. oleifera shell. Furthermore, molecular dynamics simulations demonstrated the high extraction efficiency of DESs was due to their larger solvent accessible surface area (SASA), increased number of hydrogen bonds, extended hydrogen bond lifetime, and lower intermolecular interaction energy between DESs and tea saponins. These findings provide new insights into the extraction mechanism and contribute to the optimization of DES-based extraction techniques for bioactive compounds from natural plant sources.
期刊介绍:
Innovative Food Science and Emerging Technologies (IFSET) aims to provide the highest quality original contributions and few, mainly upon invitation, reviews on and highly innovative developments in food science and emerging food process technologies. The significance of the results either for the science community or for industrial R&D groups must be specified. Papers submitted must be of highest scientific quality and only those advancing current scientific knowledge and understanding or with technical relevance will be considered.