Theoretical and experimental studies of melting of the 1/3 magnetization plateau in a frustrated \(S=1/2\) antiferromagnetic trimerized quantum Heisenberg spin chain compound \(\hbox {Na}_2\hbox {Cu}_3\hbox {Ge}_4\hbox {O}_{12}\)

IF 1.6 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER The European Physical Journal B Pub Date : 2025-03-18 DOI:10.1140/epjb/s10051-025-00891-9
Sachin Kumar, A. K. Bera, Amit Kumar, Yurii Skourski, S. M. Yusuf
{"title":"Theoretical and experimental studies of melting of the 1/3 magnetization plateau in a frustrated \\(S=1/2\\) antiferromagnetic trimerized quantum Heisenberg spin chain compound \\(\\hbox {Na}_2\\hbox {Cu}_3\\hbox {Ge}_4\\hbox {O}_{12}\\)","authors":"Sachin Kumar,&nbsp;A. K. Bera,&nbsp;Amit Kumar,&nbsp;Yurii Skourski,&nbsp;S. M. Yusuf","doi":"10.1140/epjb/s10051-025-00891-9","DOIUrl":null,"url":null,"abstract":"<p>We report the magnetization process of <span>\\(S=1/2\\)</span> Heisenberg antiferromagnetic <span>\\(J_1{-}J_1{-}J_2\\)</span> trimerized spin chain system (with frustration due to the next-nearest-neighbor interaction <span>\\(J_3\\)</span> within the trimer) under applied magnetic field by means of density-matrix renormalization group method. Here, <span>\\(J'\\)</span>s are the antiferromagnetic exchange interaction constants. Specifically, we explore the phenomenon of 1/3 magnetization plateau for the exchange coupling ratios <span>\\( \\alpha = 0.18, \\beta =0.18 \\)</span>, and <span>\\(J_1=235\\)</span> K, where <span>\\(\\alpha =J_2/J_1\\)</span>, and <span>\\(\\beta =J_3/J_1\\)</span> as found for the model compound <span>\\(\\hbox {Na}_2\\hbox {Cu}_3\\hbox {Ge}_4\\hbox {O}_{12}\\)</span>. It is found that a wide 1/3 quantum magnetization plateau state (observed in ground state magnetization) gradually disappears with increasing temperature beyond a crossover temperature <span>\\(T_{co}\\)</span> due to thermal fluctuations. Based on numerical data, the width <i>w</i>(<i>T</i>) of the magnetization plateau is found to follow an exponential behave as <span>\\(\\sim e^{-B/\\sqrt{T_{co}-T}}\\)</span>, where <i>B</i> is a constant and <span>\\(T_{co}\\)</span> is estimated to be <span>\\( \\approx 60\\)</span> K. The occurrence of the 1/3 plateau is also seen through the field-induced energy gap in the energy-level spectrum of the system. The stability of the magnetization plateau state against the perturbation depends upon the size of the energy gap. Further, calculated isothermal magnetization results are compared with experimental high field magnetization data for the quasi-one-dimensional (1D) spin <span>\\(S=1/2\\)</span> trimer chain compound <span>\\(\\hbox {Na}_2\\hbox {Cu}_3\\hbox {Ge}_4\\hbox {O}_{12}\\)</span>.</p>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"98 3","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjb/s10051-025-00891-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-025-00891-9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

We report the magnetization process of \(S=1/2\) Heisenberg antiferromagnetic \(J_1{-}J_1{-}J_2\) trimerized spin chain system (with frustration due to the next-nearest-neighbor interaction \(J_3\) within the trimer) under applied magnetic field by means of density-matrix renormalization group method. Here, \(J'\)s are the antiferromagnetic exchange interaction constants. Specifically, we explore the phenomenon of 1/3 magnetization plateau for the exchange coupling ratios \( \alpha = 0.18, \beta =0.18 \), and \(J_1=235\) K, where \(\alpha =J_2/J_1\), and \(\beta =J_3/J_1\) as found for the model compound \(\hbox {Na}_2\hbox {Cu}_3\hbox {Ge}_4\hbox {O}_{12}\). It is found that a wide 1/3 quantum magnetization plateau state (observed in ground state magnetization) gradually disappears with increasing temperature beyond a crossover temperature \(T_{co}\) due to thermal fluctuations. Based on numerical data, the width w(T) of the magnetization plateau is found to follow an exponential behave as \(\sim e^{-B/\sqrt{T_{co}-T}}\), where B is a constant and \(T_{co}\) is estimated to be \( \approx 60\) K. The occurrence of the 1/3 plateau is also seen through the field-induced energy gap in the energy-level spectrum of the system. The stability of the magnetization plateau state against the perturbation depends upon the size of the energy gap. Further, calculated isothermal magnetization results are compared with experimental high field magnetization data for the quasi-one-dimensional (1D) spin \(S=1/2\) trimer chain compound \(\hbox {Na}_2\hbox {Cu}_3\hbox {Ge}_4\hbox {O}_{12}\).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
The European Physical Journal B
The European Physical Journal B 物理-物理:凝聚态物理
CiteScore
2.80
自引率
6.20%
发文量
184
审稿时长
5.1 months
期刊介绍: Solid State and Materials; Mesoscopic and Nanoscale Systems; Computational Methods; Statistical and Nonlinear Physics
期刊最新文献
Theoretical and experimental studies of melting of the 1/3 magnetization plateau in a frustrated \(S=1/2\) antiferromagnetic trimerized quantum Heisenberg spin chain compound \(\hbox {Na}_2\hbox {Cu}_3\hbox {Ge}_4\hbox {O}_{12}\) Chirality-induced rectification in asymmetric gear systems Modulating the electronic and optical properties of InGeF3 perovskite under pressure: a computational approach DFT study of the novel double perovskite Sr2PrRuO6: structural, electronic, optical, magnetic, and thermoelectric properties Structural, wettability, optical, and electrical modifications by varying precursor solutions of sprayed Co3O4 thin films for solar cell applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1