Mohammed Miri, Younes Ziat, Hamza Belkhanchi, Ayoub Koufi, Youssef Ait El Kadi
{"title":"Modulating the electronic and optical properties of InGeF3 perovskite under pressure: a computational approach","authors":"Mohammed Miri, Younes Ziat, Hamza Belkhanchi, Ayoub Koufi, Youssef Ait El Kadi","doi":"10.1140/epjb/s10051-025-00893-7","DOIUrl":null,"url":null,"abstract":"<div><p>This study explores the structural, mechanical, electronic and optical properties of InGeF<sub>3</sub> perovskite under varying pressures using density functional theory (DFT) via the Wien2k code. Elastic constants meet mechanical stability criteria at 0 GPa, with a notable improvement in ductility and hardness under pressure. Electronic analysis reveals an indirect band gap of 1.51 eV at 0 GPa, narrowing to 0.67 eV at 9 GPa, signaling a transition to metallic behavior. The density of states shows the dominance of halogens in the valence band, and significant contributions from indium and germanium in the conduction band. Optical properties, such as absorption and reflectivity, evolve under pressure, with a shift of the absorption spectrum toward lower energies. These findings demonstrate that pressure not only modifies the electronic structure of InGeF<sub>3</sub> but also enhances its optical performance, making it a potential candidate for photovoltaic applications.</p><h3>Graphical abstract</h3><p><b>a</b>) Absorption coefficient corresponding to the energy under pressure 0 GPa, 3 GPa, 6 GPa and 9 GPa for nGeF<sub><b>3</b></sub>, <b>b)</b> Conductivity versus energy under pressure 0 GPa, 3 GPa, 6 GPa and 9 GPa GPa of InGeF<sub>3</sub></p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"98 3","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-025-00893-7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the structural, mechanical, electronic and optical properties of InGeF3 perovskite under varying pressures using density functional theory (DFT) via the Wien2k code. Elastic constants meet mechanical stability criteria at 0 GPa, with a notable improvement in ductility and hardness under pressure. Electronic analysis reveals an indirect band gap of 1.51 eV at 0 GPa, narrowing to 0.67 eV at 9 GPa, signaling a transition to metallic behavior. The density of states shows the dominance of halogens in the valence band, and significant contributions from indium and germanium in the conduction band. Optical properties, such as absorption and reflectivity, evolve under pressure, with a shift of the absorption spectrum toward lower energies. These findings demonstrate that pressure not only modifies the electronic structure of InGeF3 but also enhances its optical performance, making it a potential candidate for photovoltaic applications.
Graphical abstract
a) Absorption coefficient corresponding to the energy under pressure 0 GPa, 3 GPa, 6 GPa and 9 GPa for nGeF3, b) Conductivity versus energy under pressure 0 GPa, 3 GPa, 6 GPa and 9 GPa GPa of InGeF3