{"title":"Can we distinguish between adiabatic and isocurvature fluctuations with pulsar timing arrays?","authors":"Zu-Cheng Chen, Lang Liu","doi":"10.1007/s11433-025-2614-0","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding the nature of primordial fluctuations is pivotal to unraveling the Universe’s early evolution. While these fluctuations are observed to be nearly scale-invariant, quasi-adiabatic, and Gaussian on large scales, their small-scale behavior remains poorly constrained, offering a potential window into new physics. Recent detections of a stochastic gravitational wave background in the nanohertz frequency range by pulsar timing arrays (PTAs), including NANOGrav, PPTA, EPTA+InPTA, and CPTA, align with astrophysical predictions from supermassive black hole binaries but could also encode signatures of primordial phenomena. We investigate whether the observed signal originates from primordial isocurvature or adiabatic fluctuations by fitting them to the latest NANOGrav dataset. Through comprehensive Bayesian model comparison, we evaluate the distinguishability of these scenarios given current PTA sensitivities. Our results demonstrate that existing data cannot conclusively differentiate between isocurvature and adiabatic sources, highlighting the need for enhanced observational capabilities to probe the primordial universe at small scales.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 5","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Physics, Mechanics & Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11433-025-2614-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the nature of primordial fluctuations is pivotal to unraveling the Universe’s early evolution. While these fluctuations are observed to be nearly scale-invariant, quasi-adiabatic, and Gaussian on large scales, their small-scale behavior remains poorly constrained, offering a potential window into new physics. Recent detections of a stochastic gravitational wave background in the nanohertz frequency range by pulsar timing arrays (PTAs), including NANOGrav, PPTA, EPTA+InPTA, and CPTA, align with astrophysical predictions from supermassive black hole binaries but could also encode signatures of primordial phenomena. We investigate whether the observed signal originates from primordial isocurvature or adiabatic fluctuations by fitting them to the latest NANOGrav dataset. Through comprehensive Bayesian model comparison, we evaluate the distinguishability of these scenarios given current PTA sensitivities. Our results demonstrate that existing data cannot conclusively differentiate between isocurvature and adiabatic sources, highlighting the need for enhanced observational capabilities to probe the primordial universe at small scales.
期刊介绍:
Science China Physics, Mechanics & Astronomy, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research.
Science China Physics, Mechanics & Astronomy, is published in both print and electronic forms. It is indexed by Science Citation Index.
Categories of articles:
Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested.
Research papers report on important original results in all areas of physics, mechanics and astronomy.
Brief reports present short reports in a timely manner of the latest important results.