A Simple Model for the Hydrological Change Over Phanerozoic: Untangling Contributions From Climate and Continental Evolution

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Geophysical Research Letters Pub Date : 2025-03-18 DOI:10.1029/2025GL115077
Zelong Li, Panxi Dai, Ji Nie, Yongyun Hu, Yonggang Liu, Jun Yang, Shuai Yuan, Xiang Li, Jiaqi Guo, Jiawenjing Lan, Xiujuan Bao, Mengyu Wei, Zhibo Li, Kai Man, Zihan Yin
{"title":"A Simple Model for the Hydrological Change Over Phanerozoic: Untangling Contributions From Climate and Continental Evolution","authors":"Zelong Li,&nbsp;Panxi Dai,&nbsp;Ji Nie,&nbsp;Yongyun Hu,&nbsp;Yonggang Liu,&nbsp;Jun Yang,&nbsp;Shuai Yuan,&nbsp;Xiang Li,&nbsp;Jiaqi Guo,&nbsp;Jiawenjing Lan,&nbsp;Xiujuan Bao,&nbsp;Mengyu Wei,&nbsp;Zhibo Li,&nbsp;Kai Man,&nbsp;Zihan Yin","doi":"10.1029/2025GL115077","DOIUrl":null,"url":null,"abstract":"<p>Earth's hydrological cycle has undergone significant change during geological periods. While it is known that the global-mean surface temperature (GMST) is the first-order controlling factor, there are other factors less studied. We performed paleoclimate simulations to examine the evolution of global-mean precipitation (GMP) from 540 million years ago to today. The GMP primarily varies with GMST, however, change in the low-latitude land fraction is also important. An increase in land fraction can directly reduce GMP by reducing latent heat and increasing sensible heat. Furthermore, the weakened greenhouse gas effect of the drier atmosphere further amplify the direct impact by approximately 44%. A simple model of GMP as a function of GMST and land area fraction is developed, which effectively reproduces the simulation results throughout the Phanerozoic Eon. Our results clearly separate the effects of climate change and continental evolution on hydrological change over geological time and elucidate the functional mechanism.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 6","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025GL115077","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2025GL115077","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Earth's hydrological cycle has undergone significant change during geological periods. While it is known that the global-mean surface temperature (GMST) is the first-order controlling factor, there are other factors less studied. We performed paleoclimate simulations to examine the evolution of global-mean precipitation (GMP) from 540 million years ago to today. The GMP primarily varies with GMST, however, change in the low-latitude land fraction is also important. An increase in land fraction can directly reduce GMP by reducing latent heat and increasing sensible heat. Furthermore, the weakened greenhouse gas effect of the drier atmosphere further amplify the direct impact by approximately 44%. A simple model of GMP as a function of GMST and land area fraction is developed, which effectively reproduces the simulation results throughout the Phanerozoic Eon. Our results clearly separate the effects of climate change and continental evolution on hydrological change over geological time and elucidate the functional mechanism.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
期刊最新文献
A Simple Model for the Hydrological Change Over Phanerozoic: Untangling Contributions From Climate and Continental Evolution Propagation and Periodicity of Mars's Northern Annular Mode Modulates the Dust Cycle Strong Rayleigh Wave Radiation Toward Southwest From Ionospheric Observations of the Elbistan Earthquake of the 2023 Kahramanmaras, Türkiye, Doublet Diazotrophs: An Overlooked Sink of N2O Extreme Ventilation of the North Pacific Central Mode Water by El Niño During Positive Phase of the Pacific Decadal Oscillation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1