{"title":"Kindlin-3 Promotes Angiogenesis via Notch Signalling and Is Crucial for Functional Recovery Postmyocardial Infarction","authors":"Yan Sun, Wei Zheng, Xianling Liu, Kai Wang, Di Xu","doi":"10.1111/jcmm.70494","DOIUrl":null,"url":null,"abstract":"<p>Angiogenesis is crucial for minimising ischemic injury postmyocardial infarction (MI), making it a significant target for cardioprotective therapies. While Kindlin-3 has been linked to angiogenesis in breast cancer, its specific function in the context of MI remains largely unexplored. Although Kindlin-3 has been implicated in breast cancer-related angiogenesis, its role in MI remains underexplored. This study investigates the role of Kindlin-3 in promoting angiogenesis, a process critical for cardiac recovery following MI. The study demonstrated a significant upregulation of Kindlin-3 in cardiac microvascular endothelial cells (CMECs) in mice post-MI. Overexpression of Kindlin-3, achieved through cardiotropic adeno-associated virus serotype 9 (AAV9) with the endothelial-specific promoter Tie2, enhanced myocardial angiogenesis, improved cardiac function, decreased cardiomyocyte apoptosis and reduced fibrosis. In vitro, Kindlin-3 overexpression promoted CMECs proliferation, migration, tube formation and the expression of angiogenesis-related genes. Conversely, Kindlin-3 knockdown exerted opposite effects. Mechanistically, Kindlin-3 activated the Notch signalling pathway, as its effects were abrogated by the Notch inhibitor DAPT and β1 integrin knockdown. This study identifies Kindlin-3 as a novel enhancer of angiogenesis and suggests its potential as a therapeutic target for myocardial repair.</p>","PeriodicalId":101321,"journal":{"name":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","volume":"29 6","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.70494","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Angiogenesis is crucial for minimising ischemic injury postmyocardial infarction (MI), making it a significant target for cardioprotective therapies. While Kindlin-3 has been linked to angiogenesis in breast cancer, its specific function in the context of MI remains largely unexplored. Although Kindlin-3 has been implicated in breast cancer-related angiogenesis, its role in MI remains underexplored. This study investigates the role of Kindlin-3 in promoting angiogenesis, a process critical for cardiac recovery following MI. The study demonstrated a significant upregulation of Kindlin-3 in cardiac microvascular endothelial cells (CMECs) in mice post-MI. Overexpression of Kindlin-3, achieved through cardiotropic adeno-associated virus serotype 9 (AAV9) with the endothelial-specific promoter Tie2, enhanced myocardial angiogenesis, improved cardiac function, decreased cardiomyocyte apoptosis and reduced fibrosis. In vitro, Kindlin-3 overexpression promoted CMECs proliferation, migration, tube formation and the expression of angiogenesis-related genes. Conversely, Kindlin-3 knockdown exerted opposite effects. Mechanistically, Kindlin-3 activated the Notch signalling pathway, as its effects were abrogated by the Notch inhibitor DAPT and β1 integrin knockdown. This study identifies Kindlin-3 as a novel enhancer of angiogenesis and suggests its potential as a therapeutic target for myocardial repair.
期刊介绍:
The Journal of Cellular and Molecular Medicine serves as a bridge between physiology and cellular medicine, as well as molecular biology and molecular therapeutics. With a 20-year history, the journal adopts an interdisciplinary approach to showcase innovative discoveries.
It publishes research aimed at advancing the collective understanding of the cellular and molecular mechanisms underlying diseases. The journal emphasizes translational studies that translate this knowledge into therapeutic strategies. Being fully open access, the journal is accessible to all readers.