Identification of the Hub Gene LDB3 in Stanford Type A Aortic Dissection Based on Comprehensive Bioinformatics Analysis

Xinyi Liu, Xing Liu, Bin Wan, Yipeng Ge, Haiou Hu, Hong Yu, Meng Zhao, Huadong Li, Junming Zhu
{"title":"Identification of the Hub Gene LDB3 in Stanford Type A Aortic Dissection Based on Comprehensive Bioinformatics Analysis","authors":"Xinyi Liu,&nbsp;Xing Liu,&nbsp;Bin Wan,&nbsp;Yipeng Ge,&nbsp;Haiou Hu,&nbsp;Hong Yu,&nbsp;Meng Zhao,&nbsp;Huadong Li,&nbsp;Junming Zhu","doi":"10.1111/jcmm.70471","DOIUrl":null,"url":null,"abstract":"<p>Stanford type A aortic dissection (TAAD) is a life-threatening disease. This study explored the role of LIM domain binding 3 (LDB3) in TAAD progression. Four datasets from the Gene Expression Omnibus were analyzed to identify TAAD-related hub genes. LDB3 single nucleotide polymorphisms (SNPs) were assessed in the UK Biobank. Western blotting and immunofluorescence detected LDB3 expression in angiotensin II (Ang II) stimulated human aortic vascular smooth muscle cells (HA-VSMC), human samples, and a murine model. Bioinformatics identified tissue inhibitor of metalloproteinase-1 (TIMP1) and LDB3 as TAAD hub genes. TIMP1 was expressed in macrophages, mesenchymal cells, and smooth muscle cells, while LDB3 was mostly expressed in smooth muscle cells. Validation showed TIMP1 was upregulated and LDB3 downregulated in TAAD. Six LDB3 SNPs were associated with aortic aneurysm and dissection in the UK Biobank. In human and murine samples, LDB3 expression was reduced in diseased tissues and co-localized with smooth muscle. Ang II-stimulated HA-VSMC exhibited LDB3 reduction and altered intercellular connections. The aforementioned findings suggest that the newly identified gene LDB3 is crucial in the progression of TAAD.</p>","PeriodicalId":101321,"journal":{"name":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","volume":"29 6","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.70471","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Stanford type A aortic dissection (TAAD) is a life-threatening disease. This study explored the role of LIM domain binding 3 (LDB3) in TAAD progression. Four datasets from the Gene Expression Omnibus were analyzed to identify TAAD-related hub genes. LDB3 single nucleotide polymorphisms (SNPs) were assessed in the UK Biobank. Western blotting and immunofluorescence detected LDB3 expression in angiotensin II (Ang II) stimulated human aortic vascular smooth muscle cells (HA-VSMC), human samples, and a murine model. Bioinformatics identified tissue inhibitor of metalloproteinase-1 (TIMP1) and LDB3 as TAAD hub genes. TIMP1 was expressed in macrophages, mesenchymal cells, and smooth muscle cells, while LDB3 was mostly expressed in smooth muscle cells. Validation showed TIMP1 was upregulated and LDB3 downregulated in TAAD. Six LDB3 SNPs were associated with aortic aneurysm and dissection in the UK Biobank. In human and murine samples, LDB3 expression was reduced in diseased tissues and co-localized with smooth muscle. Ang II-stimulated HA-VSMC exhibited LDB3 reduction and altered intercellular connections. The aforementioned findings suggest that the newly identified gene LDB3 is crucial in the progression of TAAD.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.50
自引率
0.00%
发文量
0
期刊介绍: The Journal of Cellular and Molecular Medicine serves as a bridge between physiology and cellular medicine, as well as molecular biology and molecular therapeutics. With a 20-year history, the journal adopts an interdisciplinary approach to showcase innovative discoveries. It publishes research aimed at advancing the collective understanding of the cellular and molecular mechanisms underlying diseases. The journal emphasizes translational studies that translate this knowledge into therapeutic strategies. Being fully open access, the journal is accessible to all readers.
期刊最新文献
DDR1 Targeting HOXA6 Facilitates Bladder Cancer Progression via Inhibiting Ferroptosis Disease-Associated Risk Variants and Expression Levels of the lncRNA, CDKN2B-AS1, Are Associated With the Progression of HCC Comparative Analysis of Diagnostic Techniques for Helicobacter pylori Infection: Insights for Effective Therapy Kindlin-3 Promotes Angiogenesis via Notch Signalling and Is Crucial for Functional Recovery Postmyocardial Infarction Elucidation of Dexmedetomidine-Induced Analgesic Tolerance Mechanisms in Neuropathic Pain With Modulation of SGK1, NR2A, and NR2B Expression via the Spinal SGK1/NF-κB Signalling Pathway
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1