Statistical Characterization of Joule Heating Associated With Ionospheric ULF Perturbations Using SuperDARN Data

IF 2.6 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Journal of Geophysical Research: Space Physics Pub Date : 2025-03-18 DOI:10.1029/2024JA033452
Xueling Shi, Shibaji Chakraborty, Joseph B. H. Baker, Michael D. Hartinger, Wenbin Wang, J. Michael Ruohoniemi, Dong Lin, William Lotko, Kevin Sterne, Kathryn A. McWilliams
{"title":"Statistical Characterization of Joule Heating Associated With Ionospheric ULF Perturbations Using SuperDARN Data","authors":"Xueling Shi,&nbsp;Shibaji Chakraborty,&nbsp;Joseph B. H. Baker,&nbsp;Michael D. Hartinger,&nbsp;Wenbin Wang,&nbsp;J. Michael Ruohoniemi,&nbsp;Dong Lin,&nbsp;William Lotko,&nbsp;Kevin Sterne,&nbsp;Kathryn A. McWilliams","doi":"10.1029/2024JA033452","DOIUrl":null,"url":null,"abstract":"<p>Ultra low frequency (ULF; 1 mHz - several Hz) waves are key to energy transport within the geospace system, yet their contribution to Joule heating in the upper atmosphere remains poorly quantified. This study statistically examines Joule heating associated with ionospheric ULF perturbations using Super Dual Auroral Radar Network (SuperDARN) data spanning middle to polar latitudes. Our analysis utilizes high-time-resolution measurements from SuperDARN high-frequency coherent scatter radars operating in a special mode, sampling three “camping beams” approximately every 18 s. We focus on ULF perturbations within the Pc5 frequency range (1.6–6.7 mHz), estimating Joule heating rates from ionospheric electric fields derived from SuperDARN data and height-integrated Pedersen conductance from empirical models. The analysis includes statistical characterization of Pc5 wave occurrence, electric fields, Joule heating rates, and azimuthal wave numbers. Our results reveal enhanced electric fields and Joule heating rates in the morning and pre-midnight sectors, even though Pc5 wave occurrences peak in the afternoon. Joule heating is more pronounced in the high-latitude morning sector during northward interplanetary magnetic field conditions, attributed to local time asymmetry in Pedersen conductance and Pc5 waves driven by Kelvin-Helmholtz instability. Pc5 waves observed by multiple camping beams predominantly propagate westward at low azimuthal wave numbers <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mo>|</mo>\n <mi>m</mi>\n <mo>|</mo>\n <mo>&lt;</mo>\n <mn>50</mn>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation> $(\\vert m\\vert &lt; 50)$</annotation>\n </semantics></math>, while high-m waves propagate mainly eastward. Although Joule heating estimates may be underestimated due to assumptions about empirical conductance models and the underestimation of electric fields resulting from SuperDARN line-of-sight velocity measurements, these findings offer valuable insights into ULF wave-related energy dissipation in the geospace system.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JA033452","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA033452","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Ultra low frequency (ULF; 1 mHz - several Hz) waves are key to energy transport within the geospace system, yet their contribution to Joule heating in the upper atmosphere remains poorly quantified. This study statistically examines Joule heating associated with ionospheric ULF perturbations using Super Dual Auroral Radar Network (SuperDARN) data spanning middle to polar latitudes. Our analysis utilizes high-time-resolution measurements from SuperDARN high-frequency coherent scatter radars operating in a special mode, sampling three “camping beams” approximately every 18 s. We focus on ULF perturbations within the Pc5 frequency range (1.6–6.7 mHz), estimating Joule heating rates from ionospheric electric fields derived from SuperDARN data and height-integrated Pedersen conductance from empirical models. The analysis includes statistical characterization of Pc5 wave occurrence, electric fields, Joule heating rates, and azimuthal wave numbers. Our results reveal enhanced electric fields and Joule heating rates in the morning and pre-midnight sectors, even though Pc5 wave occurrences peak in the afternoon. Joule heating is more pronounced in the high-latitude morning sector during northward interplanetary magnetic field conditions, attributed to local time asymmetry in Pedersen conductance and Pc5 waves driven by Kelvin-Helmholtz instability. Pc5 waves observed by multiple camping beams predominantly propagate westward at low azimuthal wave numbers ( | m | < 50 ) $(\vert m\vert < 50)$ , while high-m waves propagate mainly eastward. Although Joule heating estimates may be underestimated due to assumptions about empirical conductance models and the underestimation of electric fields resulting from SuperDARN line-of-sight velocity measurements, these findings offer valuable insights into ULF wave-related energy dissipation in the geospace system.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
期刊最新文献
Effects of High-Latitude Input on Neutral Wind Structure and Forcing During the 17 March 2013 Storm Statistical Characterization of Joule Heating Associated With Ionospheric ULF Perturbations Using SuperDARN Data Responses of the Daytime Low and Equatorial Ionosphere and Thermosphere Over the Indian Region During the Geomagnetic Storm of April 2023 Impact of Sudden Stratospheric Warming and Elevated Stratopause Events on the Very Low Frequency Radio Signal Nonlinear Dynamics and Auroral Acceleration Processes of Electrons Driven by Kinetic Alfvén Waves in the Magnetosphere
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1