Impact of Sudden Stratospheric Warming and Elevated Stratopause Events on the Very Low Frequency Radio Signal

IF 2.6 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Journal of Geophysical Research: Space Physics Pub Date : 2025-03-17 DOI:10.1029/2024JA033320
H. Schneider, V. Wendt, D. Banyś, M. Hansen, M. Clilverd, P. T. Verronen
{"title":"Impact of Sudden Stratospheric Warming and Elevated Stratopause Events on the Very Low Frequency Radio Signal","authors":"H. Schneider,&nbsp;V. Wendt,&nbsp;D. Banyś,&nbsp;M. Hansen,&nbsp;M. Clilverd,&nbsp;P. T. Verronen","doi":"10.1029/2024JA033320","DOIUrl":null,"url":null,"abstract":"<p>Sudden Stratospheric Warmings (SSW) and Elevated Stratopause (ES) events are mid-to-high latitudinal, atmospheric wave-driven phenomena leading to significant changes in wind, temperatures, and vertical mass transport, especially at stratospheric and mesospheric altitudes. Presumably, SSW and ES-induced changes also cause modifications in the highly variable D-region ionization. This bottom side of the ionosphere behaves with the Earth's surface as a reflection boundary for Very Low Frequency (VLF) radio signal transmission used for long-distance communication. Since perturbations of the D-region ionization are also notable in the VLF signal, it is a valuable tool for continuous investigations of the D-region. Here, we study the impact of four SSW/ES events on the VLF signal amplitude between the high latitude transmitter-receiver link Keflavik, Iceland, to Ny-Ålesund, Svalbard, to gain further knowledge about interactions between the D-region and the atmosphere during these atmospheric phenomena. For three of four SSW/ES events, a very similar VLF signal amplitude signature is observed, characterized by a significant increase during the SSW period in the signal amplitude followed by a decrease during the ES period. This study aims to reveal a possible mechanism driving these similar VLF signal amplitude variations, involving modified electron neutral collision frequencies and electron densities due to changed temperatures and minor constituent concentrations according to the SSW/ES events. However, the VLF signal amplitude for one event increased 2 weeks later than during the other three events and did not show a decrease during the ES period. Possible causes for the different VLF signal amplitude variations are discussed.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JA033320","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA033320","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Sudden Stratospheric Warmings (SSW) and Elevated Stratopause (ES) events are mid-to-high latitudinal, atmospheric wave-driven phenomena leading to significant changes in wind, temperatures, and vertical mass transport, especially at stratospheric and mesospheric altitudes. Presumably, SSW and ES-induced changes also cause modifications in the highly variable D-region ionization. This bottom side of the ionosphere behaves with the Earth's surface as a reflection boundary for Very Low Frequency (VLF) radio signal transmission used for long-distance communication. Since perturbations of the D-region ionization are also notable in the VLF signal, it is a valuable tool for continuous investigations of the D-region. Here, we study the impact of four SSW/ES events on the VLF signal amplitude between the high latitude transmitter-receiver link Keflavik, Iceland, to Ny-Ålesund, Svalbard, to gain further knowledge about interactions between the D-region and the atmosphere during these atmospheric phenomena. For three of four SSW/ES events, a very similar VLF signal amplitude signature is observed, characterized by a significant increase during the SSW period in the signal amplitude followed by a decrease during the ES period. This study aims to reveal a possible mechanism driving these similar VLF signal amplitude variations, involving modified electron neutral collision frequencies and electron densities due to changed temperatures and minor constituent concentrations according to the SSW/ES events. However, the VLF signal amplitude for one event increased 2 weeks later than during the other three events and did not show a decrease during the ES period. Possible causes for the different VLF signal amplitude variations are discussed.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
期刊最新文献
Effects of High-Latitude Input on Neutral Wind Structure and Forcing During the 17 March 2013 Storm Statistical Characterization of Joule Heating Associated With Ionospheric ULF Perturbations Using SuperDARN Data Responses of the Daytime Low and Equatorial Ionosphere and Thermosphere Over the Indian Region During the Geomagnetic Storm of April 2023 Impact of Sudden Stratospheric Warming and Elevated Stratopause Events on the Very Low Frequency Radio Signal Nonlinear Dynamics and Auroral Acceleration Processes of Electrons Driven by Kinetic Alfvén Waves in the Magnetosphere
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1