Targeting PKC as a Therapeutic Strategy to Overcome Chemoresistance in TNBC by Restoring Aurora Kinase B Expression

Bing Cheng, Jinxin Chen, Vera Katalina, Guojie Long, Chaoying Wei, Zhitong Niu, Chen Chen, Panpan Wang, Qiang Yu, Wenyu Wang
{"title":"Targeting PKC as a Therapeutic Strategy to Overcome Chemoresistance in TNBC by Restoring Aurora Kinase B Expression","authors":"Bing Cheng,&nbsp;Jinxin Chen,&nbsp;Vera Katalina,&nbsp;Guojie Long,&nbsp;Chaoying Wei,&nbsp;Zhitong Niu,&nbsp;Chen Chen,&nbsp;Panpan Wang,&nbsp;Qiang Yu,&nbsp;Wenyu Wang","doi":"10.1111/jcmm.70464","DOIUrl":null,"url":null,"abstract":"<p>Triple-negative breast cancer (TNBC) poses a significant challenge due to its high mortality rates, primarily attributed to resistance against chemotherapy regimens containing taxanes like paclitaxel. Thus, developing combinatorial strategies to override resistance is a pressing need. By taking advantage of a library screening with various kinase inhibitors, we found that the small-molecule inhibitor enzastaurin targeting protein kinase C (PKC) could overcome resistance in TNBC cells. Mechanistically, dual treatment with paclitaxel and enzastaurin resulted in efficient mitotic arrest and subsequent cell death by restoring AURKB expression. Further analysis revealed that the GCN2-p-eIF2α axis was responsible for the posttranscriptional accumulation of AURKB upon combinatorial treatment. Finally, we confirmed that combinatorial regimens synergistically suppressed tumour growth in vivo in mouse models. Moreover, the efficiency of dual treatment was largely determined by AURKB, implying that AURKB could be a potential predictive marker for stratifying patients who may benefit from the combinatorial treatment. Collectively, our study not only unravels a novel underlying mechanism for paclitaxel resistance in TNBC but also provides a new potential combinatorial therapeutic strategy in the clinic.</p>","PeriodicalId":101321,"journal":{"name":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","volume":"29 6","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.70464","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Triple-negative breast cancer (TNBC) poses a significant challenge due to its high mortality rates, primarily attributed to resistance against chemotherapy regimens containing taxanes like paclitaxel. Thus, developing combinatorial strategies to override resistance is a pressing need. By taking advantage of a library screening with various kinase inhibitors, we found that the small-molecule inhibitor enzastaurin targeting protein kinase C (PKC) could overcome resistance in TNBC cells. Mechanistically, dual treatment with paclitaxel and enzastaurin resulted in efficient mitotic arrest and subsequent cell death by restoring AURKB expression. Further analysis revealed that the GCN2-p-eIF2α axis was responsible for the posttranscriptional accumulation of AURKB upon combinatorial treatment. Finally, we confirmed that combinatorial regimens synergistically suppressed tumour growth in vivo in mouse models. Moreover, the efficiency of dual treatment was largely determined by AURKB, implying that AURKB could be a potential predictive marker for stratifying patients who may benefit from the combinatorial treatment. Collectively, our study not only unravels a novel underlying mechanism for paclitaxel resistance in TNBC but also provides a new potential combinatorial therapeutic strategy in the clinic.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过恢复极光激酶 B 的表达,将 PKC 靶向作为克服 TNBC 化疗耐药性的治疗策略
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.50
自引率
0.00%
发文量
0
期刊介绍: The Journal of Cellular and Molecular Medicine serves as a bridge between physiology and cellular medicine, as well as molecular biology and molecular therapeutics. With a 20-year history, the journal adopts an interdisciplinary approach to showcase innovative discoveries. It publishes research aimed at advancing the collective understanding of the cellular and molecular mechanisms underlying diseases. The journal emphasizes translational studies that translate this knowledge into therapeutic strategies. Being fully open access, the journal is accessible to all readers.
期刊最新文献
DDR1 Targeting HOXA6 Facilitates Bladder Cancer Progression via Inhibiting Ferroptosis Disease-Associated Risk Variants and Expression Levels of the lncRNA, CDKN2B-AS1, Are Associated With the Progression of HCC Comparative Analysis of Diagnostic Techniques for Helicobacter pylori Infection: Insights for Effective Therapy Kindlin-3 Promotes Angiogenesis via Notch Signalling and Is Crucial for Functional Recovery Postmyocardial Infarction Elucidation of Dexmedetomidine-Induced Analgesic Tolerance Mechanisms in Neuropathic Pain With Modulation of SGK1, NR2A, and NR2B Expression via the Spinal SGK1/NF-κB Signalling Pathway
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1