J. C. Antuña-Marrero, R. Román, V. E. Cachorro, D. Mateos, C. Toledano, A. Calle, J. C. Antuña-Sánchez, R. Gonzalez, M. Antón, J. Vaquero-Martínez, Á. M. de Frutos Baraja
{"title":"Comparing Integrated Water Vapor Sun Photometer Observations Over the Arctic With ERA5 and MERRA-2 Reanalyses","authors":"J. C. Antuña-Marrero, R. Román, V. E. Cachorro, D. Mateos, C. Toledano, A. Calle, J. C. Antuña-Sánchez, R. Gonzalez, M. Antón, J. Vaquero-Martínez, Á. M. de Frutos Baraja","doi":"10.1029/2024JD041120","DOIUrl":null,"url":null,"abstract":"<p>Atmospheric water vapor, a greenhouse gas, is increasing in the Arctic. It is a scientific challenge to understand the causes for this increase and determine adaptation and mitigation actions to confront its climatic effects. During the last decades, spatial and temporal coverage of water vapor satellite observations increased notably, and reanalysis water vapor estimates have steadily improved. However, the scarce spatial and temporal coverage in the Arctic of integrated water vapor (IWV) surface-based observations limits the representativeness of satellite observations and reanalysis estimate validations. Recently, we validated sun photometer IWV (IWVsp) observations with IWV from radiosondes in the Arctic. Here, we compare the hourly means of IWVsp from 13 Arctic AERONET stations and the IWV from ERA-5 and MERRA-2 reanalyses. The comparison is conducted at hourly timescale for individual stations for two Arctic regions and for the whole Arctic. The comparison showed a moist bias of IWV from reanalyses with respect to IWVsp. The individual station wise pattern shows slightly better accuracy and precision for ERA5 than for MERRA-2 also evident at the selected subregional scale. The differences of IWV from ERA5 and MERRA-2 and IWVsp show no dependence on IWVsp nor the solar zenith angle. This study corroborates that IWVsp may be used for validations of satellite IWV observations and IWV reanalyses products.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":"130 6","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JD041120","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Atmospheric water vapor, a greenhouse gas, is increasing in the Arctic. It is a scientific challenge to understand the causes for this increase and determine adaptation and mitigation actions to confront its climatic effects. During the last decades, spatial and temporal coverage of water vapor satellite observations increased notably, and reanalysis water vapor estimates have steadily improved. However, the scarce spatial and temporal coverage in the Arctic of integrated water vapor (IWV) surface-based observations limits the representativeness of satellite observations and reanalysis estimate validations. Recently, we validated sun photometer IWV (IWVsp) observations with IWV from radiosondes in the Arctic. Here, we compare the hourly means of IWVsp from 13 Arctic AERONET stations and the IWV from ERA-5 and MERRA-2 reanalyses. The comparison is conducted at hourly timescale for individual stations for two Arctic regions and for the whole Arctic. The comparison showed a moist bias of IWV from reanalyses with respect to IWVsp. The individual station wise pattern shows slightly better accuracy and precision for ERA5 than for MERRA-2 also evident at the selected subregional scale. The differences of IWV from ERA5 and MERRA-2 and IWVsp show no dependence on IWVsp nor the solar zenith angle. This study corroborates that IWVsp may be used for validations of satellite IWV observations and IWV reanalyses products.
期刊介绍:
JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.