{"title":"CSI Acquisition in Internet of Vehicle Network: Federated Edge Learning With Model Pruning and Vector Quantization","authors":"Yi Wang, Junlei Zhi, Linsheng Mei, Wei Huang","doi":"10.1155/int/5813659","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The conventional machine learning (ML)–based channel state information (CSI) acquisition has overlooked the potential privacy disclosure and estimation overhead problem caused by transmitting pilot datasets during the estimation stage. In this paper, we propose federated edge learning for CSI acquisition to protect the data privacy in the Internet of vehicle network with massive antenna array. To reduce the channel estimation overhead, the joint model pruning and vector quantization algorithm for network gradient parameters is presented to reduce the amount of exchange information between the centralized server and devices. This scheme allows for local fine-tuning to adapt the global model to the channel characteristics of each device. In addition, we also provide theoretical guarantees of convergence and quantization error bound in closed form, respectively. Simulation results demonstrate that the proposed FL-based CSI acquisition with model pruning and vector quantization scheme can efficiently improve the performance of channel estimation while reducing the communication overhead.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/5813659","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/int/5813659","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The conventional machine learning (ML)–based channel state information (CSI) acquisition has overlooked the potential privacy disclosure and estimation overhead problem caused by transmitting pilot datasets during the estimation stage. In this paper, we propose federated edge learning for CSI acquisition to protect the data privacy in the Internet of vehicle network with massive antenna array. To reduce the channel estimation overhead, the joint model pruning and vector quantization algorithm for network gradient parameters is presented to reduce the amount of exchange information between the centralized server and devices. This scheme allows for local fine-tuning to adapt the global model to the channel characteristics of each device. In addition, we also provide theoretical guarantees of convergence and quantization error bound in closed form, respectively. Simulation results demonstrate that the proposed FL-based CSI acquisition with model pruning and vector quantization scheme can efficiently improve the performance of channel estimation while reducing the communication overhead.
期刊介绍:
The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.