Transcriptomic and Histological Characterization of Telocytes in the Human Dorsal Root Ganglion

IF 2.3 4区 医学 Q3 NEUROSCIENCES Journal of Comparative Neurology Pub Date : 2025-03-17 DOI:10.1002/cne.70044
Rainer V. Haberberger, Dusan Matusica, Stephanie Shiers, Ishwarya Sankaranarayanan, Theodore J. Price
{"title":"Transcriptomic and Histological Characterization of Telocytes in the Human Dorsal Root Ganglion","authors":"Rainer V. Haberberger,&nbsp;Dusan Matusica,&nbsp;Stephanie Shiers,&nbsp;Ishwarya Sankaranarayanan,&nbsp;Theodore J. Price","doi":"10.1002/cne.70044","DOIUrl":null,"url":null,"abstract":"<p>Telocytes are interstitial cells characterized by long processes that span considerable distances within tissues, likely facilitating coordination and interaction with various cell types. Although present in central and peripheral neuronal tissues, their role remains elusive. Dorsal root ganglia (DRG) house pseudounipolar afferent neurons responsible for transmitting signals related to temperature, proprioception, and nociception. This study aimed to investigate the presence and function of telocytes in human DRG by examining their transcriptional profile, anatomical location, and ultrastructure.</p><p>Combined expression of <i>CD34</i> and <i>PDGFRA</i> is a marker gene set for telocytes, and our sequencing data revealed CD34 and PDGFRA expressing cells comprise roughly 1.5%–3% of DRG cells. Combined expression of <i>CD34</i> and <i>PDGFRA</i> is a putative marker gene set for telocytes. Further analysis identified nine subclusters with enriched cluster-specific genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) pathway analysis suggested vascular, immune, and connective tissue-associated putative telocyte subtypes, mapping over 3000 potential receptor–ligand interactions between sensory neurons and these <i>CD34</i> and <i>PDGFRA</i> expressing putative telocytes were identified using a ligand–receptors interactome platform. Immunohistochemistry identified CD34+ve telocytes in the endoneural space of DRGs, next to neuron–satellite complexes, in perivascular spaces and in the endoneural space between nerve fiber bundles, consistent with pathway analysis. Transmission electron microscopy (TEM) confirmed their location identifying characteristic elongated nucleus, long and thin telopodes containing vesicles, often surrounded by a basal lamina. This study provides the first gene expression analysis of telocytes in complex human tissue, specifically the DRG, highlighting functional differences based on tissue location while revealing no significant ultrastructural variations.</p>","PeriodicalId":15552,"journal":{"name":"Journal of Comparative Neurology","volume":"533 3","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cne.70044","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Comparative Neurology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cne.70044","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Telocytes are interstitial cells characterized by long processes that span considerable distances within tissues, likely facilitating coordination and interaction with various cell types. Although present in central and peripheral neuronal tissues, their role remains elusive. Dorsal root ganglia (DRG) house pseudounipolar afferent neurons responsible for transmitting signals related to temperature, proprioception, and nociception. This study aimed to investigate the presence and function of telocytes in human DRG by examining their transcriptional profile, anatomical location, and ultrastructure.

Combined expression of CD34 and PDGFRA is a marker gene set for telocytes, and our sequencing data revealed CD34 and PDGFRA expressing cells comprise roughly 1.5%–3% of DRG cells. Combined expression of CD34 and PDGFRA is a putative marker gene set for telocytes. Further analysis identified nine subclusters with enriched cluster-specific genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) pathway analysis suggested vascular, immune, and connective tissue-associated putative telocyte subtypes, mapping over 3000 potential receptor–ligand interactions between sensory neurons and these CD34 and PDGFRA expressing putative telocytes were identified using a ligand–receptors interactome platform. Immunohistochemistry identified CD34+ve telocytes in the endoneural space of DRGs, next to neuron–satellite complexes, in perivascular spaces and in the endoneural space between nerve fiber bundles, consistent with pathway analysis. Transmission electron microscopy (TEM) confirmed their location identifying characteristic elongated nucleus, long and thin telopodes containing vesicles, often surrounded by a basal lamina. This study provides the first gene expression analysis of telocytes in complex human tissue, specifically the DRG, highlighting functional differences based on tissue location while revealing no significant ultrastructural variations.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.80
自引率
8.00%
发文量
158
审稿时长
3-6 weeks
期刊介绍: Established in 1891, JCN is the oldest continually published basic neuroscience journal. Historically, as the name suggests, the journal focused on a comparison among species to uncover the intricacies of how the brain functions. In modern times, this research is called systems neuroscience where animal models are used to mimic core cognitive processes with the ultimate goal of understanding neural circuits and connections that give rise to behavioral patterns and different neural states. Research published in JCN covers all species from invertebrates to humans, and the reports inform the readers about the function and organization of nervous systems in species with an emphasis on the way that species adaptations inform about the function or organization of the nervous systems, rather than on their evolution per se. JCN publishes primary research articles and critical commentaries and review-type articles offering expert insight in to cutting edge research in the field of systems neuroscience; a complete list of contribution types is given in the Author Guidelines. For primary research contributions, only full-length investigative reports are desired; the journal does not accept short communications.
期刊最新文献
Transcriptomic and Histological Characterization of Telocytes in the Human Dorsal Root Ganglion Ultrastructural Contributions to Extrasynaptic Glutamatergic Signaling in Olfactory Bulb Glomeruli Brainwide Projections of Mouse Dopaminergic Zona Incerta Neurons Issue Information Heterogeneity of Layer 1 Interneurons in the Mouse Medial Prefrontal Cortex
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1