Wei Dai , Gong Chen , Wei Peng , Chuyue Chen , Xiaodong Fu , Li Liu , Lijun Liu , Ning Yu
{"title":"Domain alignment method based on masked variational autoencoder for predicting patient anticancer drug response","authors":"Wei Dai , Gong Chen , Wei Peng , Chuyue Chen , Xiaodong Fu , Li Liu , Lijun Liu , Ning Yu","doi":"10.1016/j.ymeth.2025.03.012","DOIUrl":null,"url":null,"abstract":"<div><div>Predicting the patient’s response to anticancer drugs is essential in personalized treatment plans. However, due to significant distribution differences between cell line data and patient data, models trained well on cell line data may perform poorly on patient anticancer drug response predictions. Some existing methods use transfer learning strategies to implement domain feature alignment between cell lines and patient data and leverage knowledge from cell lines to predict patient anticancer drug responses. This study proposes a domain alignment method based on masked variational autoencoders, MVAEDA, to predict patient anticancer drug responses. The model constructs multiple variational autoencoders (VAEs) and mask predictors to extract specific and domain-invariant features of cell lines and patients. Then, it masks and reconstructs the gene expression matrix, using generative adversarial training to learn domain-invariant features from the cell line and patient domains. These domain-invariant features are then used to train a classifier. Finally, the final trained model predicts the anticancer drug response in the target domain. Our model is experimentally evaluated on the clinical dataset and the preclinical dataset. The results show that our method performs better than other state-of-the-art methods.</div></div>","PeriodicalId":390,"journal":{"name":"Methods","volume":"238 ","pages":"Pages 61-73"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1046202325000787","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Predicting the patient’s response to anticancer drugs is essential in personalized treatment plans. However, due to significant distribution differences between cell line data and patient data, models trained well on cell line data may perform poorly on patient anticancer drug response predictions. Some existing methods use transfer learning strategies to implement domain feature alignment between cell lines and patient data and leverage knowledge from cell lines to predict patient anticancer drug responses. This study proposes a domain alignment method based on masked variational autoencoders, MVAEDA, to predict patient anticancer drug responses. The model constructs multiple variational autoencoders (VAEs) and mask predictors to extract specific and domain-invariant features of cell lines and patients. Then, it masks and reconstructs the gene expression matrix, using generative adversarial training to learn domain-invariant features from the cell line and patient domains. These domain-invariant features are then used to train a classifier. Finally, the final trained model predicts the anticancer drug response in the target domain. Our model is experimentally evaluated on the clinical dataset and the preclinical dataset. The results show that our method performs better than other state-of-the-art methods.
期刊介绍:
Methods focuses on rapidly developing techniques in the experimental biological and medical sciences.
Each topical issue, organized by a guest editor who is an expert in the area covered, consists solely of invited quality articles by specialist authors, many of them reviews. Issues are devoted to specific technical approaches with emphasis on clear detailed descriptions of protocols that allow them to be reproduced easily. The background information provided enables researchers to understand the principles underlying the methods; other helpful sections include comparisons of alternative methods giving the advantages and disadvantages of particular methods, guidance on avoiding potential pitfalls, and suggestions for troubleshooting.