Directed Evolution of Fluorescent Genetically Encoded Biosensors: Innovative Approaches for Development and Optimization of Biosensors.

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY ChemBioChem Pub Date : 2025-03-16 DOI:10.1002/cbic.202401055
Nikita A Kuldyushev
{"title":"Directed Evolution of Fluorescent Genetically Encoded Biosensors: Innovative Approaches for Development and Optimization of Biosensors.","authors":"Nikita A Kuldyushev","doi":"10.1002/cbic.202401055","DOIUrl":null,"url":null,"abstract":"<p><p>Fluorescent protein-based biosensors are indispensable molecular tools in cell biology and biomedical research, providing non-invasive dynamic measurements of metabolite concentrations and other cellular signals. Traditional methods for developing these biosensors rely on rational design, but directed evolution methods offer a more efficient alternative. This review discusses recent advancements in the development of biosensors using directed evolution, including methods for optimizing domain fusions, sequence optimization, and new screening and selection systems. Additionally, the incorporation of machine learning into the directed evolution process is explored, highlighting its potential to enhance the efficiency and cost reduction of biosensor development. Finally, emerging trends in the development of near-infrared biosensors and photochromic sensors are discussed, along with the opportunities presented by de novo design of sensing domains and biosensors.</p>","PeriodicalId":140,"journal":{"name":"ChemBioChem","volume":" ","pages":"e202401055"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioChem","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbic.202401055","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Fluorescent protein-based biosensors are indispensable molecular tools in cell biology and biomedical research, providing non-invasive dynamic measurements of metabolite concentrations and other cellular signals. Traditional methods for developing these biosensors rely on rational design, but directed evolution methods offer a more efficient alternative. This review discusses recent advancements in the development of biosensors using directed evolution, including methods for optimizing domain fusions, sequence optimization, and new screening and selection systems. Additionally, the incorporation of machine learning into the directed evolution process is explored, highlighting its potential to enhance the efficiency and cost reduction of biosensor development. Finally, emerging trends in the development of near-infrared biosensors and photochromic sensors are discussed, along with the opportunities presented by de novo design of sensing domains and biosensors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemBioChem
ChemBioChem 生物-生化与分子生物学
CiteScore
6.10
自引率
3.10%
发文量
407
审稿时长
1 months
期刊介绍: ChemBioChem (Impact Factor 2018: 2.641) publishes important breakthroughs across all areas at the interface of chemistry and biology, including the fields of chemical biology, bioorganic chemistry, bioinorganic chemistry, synthetic biology, biocatalysis, bionanotechnology, and biomaterials. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and supported by the Asian Chemical Editorial Society (ACES).
期刊最新文献
Directed Evolution of Fluorescent Genetically Encoded Biosensors: Innovative Approaches for Development and Optimization of Biosensors. Cover Feature: Target Identification of Marine Natural Product Odoamide:Odoamide Induces Apoptotic Cell Death by Targeting ATPase Na+/K+ Transporting Subunit Alpha 1 (ATP1A1) (ChemBioChem 6/2025) Front Cover: Development of a Highly Selective NanoBRET Probe to Assess MAGL Inhibition in Live Cells (ChemBioChem 6/2025) Bioorthogonal Reactions for Bioactive Sulfur Species Delivery. Engineering and structural elucidation of a Sac7d-derived IgG Fc-specific affitin and its application for the light-controlled affinity purification of antibodies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1