Xinwan Zhao, Minjun Lei, Xiaoli Ma, Youji Li, Zhiliang Jin
{"title":"Improved photocatalytic hydrogen production with the π-d conjugation between amino groups in COFs and CoS2, along with the S-scheme heterojunction","authors":"Xinwan Zhao, Minjun Lei, Xiaoli Ma, Youji Li, Zhiliang Jin","doi":"10.1016/j.jcat.2025.116086","DOIUrl":null,"url":null,"abstract":"Covalent organic frameworks are promising polymer semiconductors for solar-driven hydrogen production. However, rapid charge recombination and low surface reaction kinetics currently limit their photocatalytic performance. A two-dimensional Schiff base TaTp-covalent organic framework loaded with CoS<sub>2</sub> was synthesized via a one-pot solid-state thermal method in this study, and an inorganic-organic S-scheme heterojunction CoS<sub>2</sub>/TaTp-COF composite material was thereby constructed. When the CoS<sub>2</sub> loading reached 11 wt%, an optimal photocatalytic H<sub>2</sub> evolution rate was demonstrated by the composite, achieving an apparent quantum efficiency of 5.91 % at 500 nm. This notable improvement can be ascribed to the π-d conjugation effect occurring at the heterojunction interface. This phenomenon facilitates effective charge separation and transfer, consequently boosting the redox capabilities. Both experimental results and theoretical calculations confirmed the successful formation of the S- scheme heterojunction and elucidated the underlying charge transfer mechanism. This research not only provides new insights into COF-based photocatalytic hydrogen evolution but also offers valuable strategies for designing heterojunction catalysts.","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":"49 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcat.2025.116086","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Covalent organic frameworks are promising polymer semiconductors for solar-driven hydrogen production. However, rapid charge recombination and low surface reaction kinetics currently limit their photocatalytic performance. A two-dimensional Schiff base TaTp-covalent organic framework loaded with CoS2 was synthesized via a one-pot solid-state thermal method in this study, and an inorganic-organic S-scheme heterojunction CoS2/TaTp-COF composite material was thereby constructed. When the CoS2 loading reached 11 wt%, an optimal photocatalytic H2 evolution rate was demonstrated by the composite, achieving an apparent quantum efficiency of 5.91 % at 500 nm. This notable improvement can be ascribed to the π-d conjugation effect occurring at the heterojunction interface. This phenomenon facilitates effective charge separation and transfer, consequently boosting the redox capabilities. Both experimental results and theoretical calculations confirmed the successful formation of the S- scheme heterojunction and elucidated the underlying charge transfer mechanism. This research not only provides new insights into COF-based photocatalytic hydrogen evolution but also offers valuable strategies for designing heterojunction catalysts.
期刊介绍:
The Journal of Catalysis publishes scholarly articles on both heterogeneous and homogeneous catalysis, covering a wide range of chemical transformations. These include various types of catalysis, such as those mediated by photons, plasmons, and electrons. The focus of the studies is to understand the relationship between catalytic function and the underlying chemical properties of surfaces and metal complexes.
The articles in the journal offer innovative concepts and explore the synthesis and kinetics of inorganic solids and homogeneous complexes. Furthermore, they discuss spectroscopic techniques for characterizing catalysts, investigate the interaction of probes and reacting species with catalysts, and employ theoretical methods.
The research presented in the journal should have direct relevance to the field of catalytic processes, addressing either fundamental aspects or applications of catalysis.