Synergistic effect of single atoms and clusters on boosting activity of TiO2-supported Pd catalysts towards total furfural hydrogenation

IF 6.5 1区 化学 Q2 CHEMISTRY, PHYSICAL Journal of Catalysis Pub Date : 2025-03-18 DOI:10.1016/j.jcat.2025.116083
Jin Gu, Hao Zhang, Miao Guo, Yanming Hu
{"title":"Synergistic effect of single atoms and clusters on boosting activity of TiO2-supported Pd catalysts towards total furfural hydrogenation","authors":"Jin Gu, Hao Zhang, Miao Guo, Yanming Hu","doi":"10.1016/j.jcat.2025.116083","DOIUrl":null,"url":null,"abstract":"Total furfural (FAL) hydrogenation to the industrially valuable tetrahydrofurfuryl alcohol (THFOL) involves the cascade hydrogenation of the formyl and furanic groups. However, supported metal catalysts are generally confronted with low activity, especially under mild conditions. Herein, we present a highly active Pd catalyst supported on TiO<sub>2</sub> with a Pd loading of 0.2 wt% (0.2Pd/TiO<sub>2</sub>) for the efficient one-pot conversion of FAL to THFOL. Under mild conditions (25 °C, 60 bar H<sub>2</sub>), 0.2Pd/TiO<sub>2</sub> achieves 90 % FAL conversion and 96 % selectivity to THFOL, outperforming the conventional high-Pd-content catalysts (e.g. 5 wt%Pd/TiO<sub>2</sub>) and most reported catalysts. Detailed characterization and kinetic investigations reveal that the exceptional performance stems from the synergistic interplay between Pd single atoms and nanoclusters on the 0.2Pd/TiO<sub>2</sub> catalyst. Furthermore, kinetic studies highlight the crucial role of H<sub>2</sub>O in promoting the desired reaction pathway. Impressively, 0.2Pd/TiO<sub>2</sub> demonstrates excellent stability, the activity and selectivity remain nearly identical even over seven consecutive reaction cycles. Moreover, the catalyst exhibits broad applicability, effectively hydrogenating various furanic compounds to the corresponding saturated products. This study provides key insights into the rational design of highly efficient and selective catalysts for tandem hydrogenation reactions.","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":"25 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcat.2025.116083","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Total furfural (FAL) hydrogenation to the industrially valuable tetrahydrofurfuryl alcohol (THFOL) involves the cascade hydrogenation of the formyl and furanic groups. However, supported metal catalysts are generally confronted with low activity, especially under mild conditions. Herein, we present a highly active Pd catalyst supported on TiO2 with a Pd loading of 0.2 wt% (0.2Pd/TiO2) for the efficient one-pot conversion of FAL to THFOL. Under mild conditions (25 °C, 60 bar H2), 0.2Pd/TiO2 achieves 90 % FAL conversion and 96 % selectivity to THFOL, outperforming the conventional high-Pd-content catalysts (e.g. 5 wt%Pd/TiO2) and most reported catalysts. Detailed characterization and kinetic investigations reveal that the exceptional performance stems from the synergistic interplay between Pd single atoms and nanoclusters on the 0.2Pd/TiO2 catalyst. Furthermore, kinetic studies highlight the crucial role of H2O in promoting the desired reaction pathway. Impressively, 0.2Pd/TiO2 demonstrates excellent stability, the activity and selectivity remain nearly identical even over seven consecutive reaction cycles. Moreover, the catalyst exhibits broad applicability, effectively hydrogenating various furanic compounds to the corresponding saturated products. This study provides key insights into the rational design of highly efficient and selective catalysts for tandem hydrogenation reactions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Catalysis
Journal of Catalysis 工程技术-工程:化工
CiteScore
12.30
自引率
5.50%
发文量
447
审稿时长
31 days
期刊介绍: The Journal of Catalysis publishes scholarly articles on both heterogeneous and homogeneous catalysis, covering a wide range of chemical transformations. These include various types of catalysis, such as those mediated by photons, plasmons, and electrons. The focus of the studies is to understand the relationship between catalytic function and the underlying chemical properties of surfaces and metal complexes. The articles in the journal offer innovative concepts and explore the synthesis and kinetics of inorganic solids and homogeneous complexes. Furthermore, they discuss spectroscopic techniques for characterizing catalysts, investigate the interaction of probes and reacting species with catalysts, and employ theoretical methods. The research presented in the journal should have direct relevance to the field of catalytic processes, addressing either fundamental aspects or applications of catalysis.
期刊最新文献
Effective coupling of aliphatic primary amines to imines on Cu-doped WO3 photocatalyst under aerobic and anaerobic conditions Identification and evolution of active sites in isomorphously substituted Fe-ZSM-5 catalysts for methane dehydroaromatization (MDA) Engineering surface defect active sites in SnS2 nanosheets with electron-donating groups for efficient photoelectrochemical water splitting Synergistic effect of single atoms and clusters on boosting activity of TiO2-supported Pd catalysts towards total furfural hydrogenation Improved photocatalytic hydrogen production with the π-d conjugation between amino groups in COFs and CoS2, along with the S-scheme heterojunction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1