Shenglin Yang, Yixuan Yang, Hongyuan Li, Jie Li, Yunrui Chen, Lin Xu, Bingsuo Zou, Yabin Zhang, Ben Wang
{"title":"Hydrophobic soft cone-assisted rolling robot inspired by sea urchin for gastrointestinal tract delivery","authors":"Shenglin Yang, Yixuan Yang, Hongyuan Li, Jie Li, Yunrui Chen, Lin Xu, Bingsuo Zou, Yabin Zhang, Ben Wang","doi":"10.26599/frict.2025.9441099","DOIUrl":null,"url":null,"abstract":"<p>Miniature soft robots have evolved into various therapeutic applications due to good adaptability. Nonetheless, complex terrains inside body, especially soft wrinkled topography with non-Newtonian viscous mucus in the gastrointestinal tract, pose a strict demand on the navigation of such robots. To address the challenge, here a design inspiration derived from sea urchin is proposed to fabricate the soft-cone-assisted rolling robot (SCARBot) by encapsulating blood coagulation gel, creating a hollow cylindrical structure for loading drugs inside. The arrangement of an array of soft cones with manually designed hydrophobicity allows for controlled locomotion of the robots under low-frequency magnetic field, significantly reducing surface friction and improving environmental adaptability. This motion ability is further supported by US-imaging-guided navigation in an ex vivo and even in vivo gastrointestinal tract. When the high-frequency magnetic field is exerted, the drug-loaded blood coagulation gel sealed inside the robot melts by magnetothermal effect, thereby releasing drugs at the targeted location. The synergy of magnetothermal and pharmacological therapy enable this robot to exhibit enhanced antibacterial efficiency for ex vivo and in vivo bacterial infection and inflammation. Such soft robots with exceptional adaptability and therapeutic functions offer high potential for targeted delivery and therapy through lumens inside body.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"100 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26599/frict.2025.9441099","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Miniature soft robots have evolved into various therapeutic applications due to good adaptability. Nonetheless, complex terrains inside body, especially soft wrinkled topography with non-Newtonian viscous mucus in the gastrointestinal tract, pose a strict demand on the navigation of such robots. To address the challenge, here a design inspiration derived from sea urchin is proposed to fabricate the soft-cone-assisted rolling robot (SCARBot) by encapsulating blood coagulation gel, creating a hollow cylindrical structure for loading drugs inside. The arrangement of an array of soft cones with manually designed hydrophobicity allows for controlled locomotion of the robots under low-frequency magnetic field, significantly reducing surface friction and improving environmental adaptability. This motion ability is further supported by US-imaging-guided navigation in an ex vivo and even in vivo gastrointestinal tract. When the high-frequency magnetic field is exerted, the drug-loaded blood coagulation gel sealed inside the robot melts by magnetothermal effect, thereby releasing drugs at the targeted location. The synergy of magnetothermal and pharmacological therapy enable this robot to exhibit enhanced antibacterial efficiency for ex vivo and in vivo bacterial infection and inflammation. Such soft robots with exceptional adaptability and therapeutic functions offer high potential for targeted delivery and therapy through lumens inside body.
期刊介绍:
Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as:
Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc.
Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc.
Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc.
Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc.
Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc.
Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.