Bioinspired Adhesives with Debonding-on-Demand Capability

IF 5.1 Q1 POLYMER SCIENCE ACS Macro Letters Pub Date : 2025-03-18 DOI:10.1021/acsmacrolett.5c00035
Athanasios Skandalis, Mathieu A. Ayer, Christoph Weder
{"title":"Bioinspired Adhesives with Debonding-on-Demand Capability","authors":"Athanasios Skandalis, Mathieu A. Ayer, Christoph Weder","doi":"10.1021/acsmacrolett.5c00035","DOIUrl":null,"url":null,"abstract":"Adhesives with debonding-on-demand (DoD) capability can simplify and improve manufacturing processes, extend the life cycle of products, and facilitate recycling, thus attracting fast-growing interest for use in different sectors. A general design approach for DoD adhesives is based on supramolecular polymers, which can be disassembled by an external stimulus, allowing the modification of the physical properties of these materials. However, the adhesive strength of supramolecular adhesives is generally limited to a few megapascals, and their synthesis is often quite involved. Here, we report that these problems can be overcome by a family of adhesives that were inspired by the structure and function of the natural resin shellac. These adhesives are based on linear oligomers of bisphenol A diglycidyl ether and secondary diamines and have, despite the widespread use of cross-linked epoxy thermosets, remained unexplored thus far. We show that if the molecular weight is limited, highly soluble and melt-processable adhesives can be produced. Adhesion tests performed on lap joints made with stainless steel substrates reveal a shear strength of 3.5–16 MPa, and the upper limit of this range exceeds the bond strength of the shellac blueprint and many previous supramolecular adhesives. We demonstrate that debonding upon heating above the glass transition temperature is readily possible and that broken joints can easily rebond without any loss in adhesive strength.","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"40 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Macro Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsmacrolett.5c00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Adhesives with debonding-on-demand (DoD) capability can simplify and improve manufacturing processes, extend the life cycle of products, and facilitate recycling, thus attracting fast-growing interest for use in different sectors. A general design approach for DoD adhesives is based on supramolecular polymers, which can be disassembled by an external stimulus, allowing the modification of the physical properties of these materials. However, the adhesive strength of supramolecular adhesives is generally limited to a few megapascals, and their synthesis is often quite involved. Here, we report that these problems can be overcome by a family of adhesives that were inspired by the structure and function of the natural resin shellac. These adhesives are based on linear oligomers of bisphenol A diglycidyl ether and secondary diamines and have, despite the widespread use of cross-linked epoxy thermosets, remained unexplored thus far. We show that if the molecular weight is limited, highly soluble and melt-processable adhesives can be produced. Adhesion tests performed on lap joints made with stainless steel substrates reveal a shear strength of 3.5–16 MPa, and the upper limit of this range exceeds the bond strength of the shellac blueprint and many previous supramolecular adhesives. We demonstrate that debonding upon heating above the glass transition temperature is readily possible and that broken joints can easily rebond without any loss in adhesive strength.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.40
自引率
3.40%
发文量
209
审稿时长
1 months
期刊介绍: ACS Macro Letters publishes research in all areas of contemporary soft matter science in which macromolecules play a key role, including nanotechnology, self-assembly, supramolecular chemistry, biomaterials, energy generation and storage, and renewable/sustainable materials. Submissions to ACS Macro Letters should justify clearly the rapid disclosure of the key elements of the study. The scope of the journal includes high-impact research of broad interest in all areas of polymer science and engineering, including cross-disciplinary research that interfaces with polymer science. With the launch of ACS Macro Letters, all Communications that were formerly published in Macromolecules and Biomacromolecules will be published as Letters in ACS Macro Letters.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Helical Poly(quioxaline-2,3-diyl)-Based Poly(carboxylic acid)s as a Chiroptical Chemosensor for Detection and Quantification of Small Enantiomeric Imbalances of Chiral Amines in Water. Pure Organic Thermally Activated Delayed Fluorescence Afterglow Polymers via Dopant Isomerization. Bioinspired Adhesives with Debonding-on-Demand Capability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1