Zhaoyang Han, Jingyun Wang, Xiaoyong Liao, Jun Yang
{"title":"Accurate Prediction of Spatial Distribution of Soil Heavy Metal in Complex Mining Terrain Using an Improved Machine Learning Method","authors":"Zhaoyang Han, Jingyun Wang, Xiaoyong Liao, Jun Yang","doi":"10.1016/j.jhazmat.2025.137994","DOIUrl":null,"url":null,"abstract":"Accurate prediction of heavy metals (HMs) spatial distribution in mining areas is crucial for pollution management. However, predicting the spatial distribution of HMs remains a significant challenge in mining areas with complex terrain and variable contaminant transport pathways. This study aims to optimize the spatial prediction of arsenic (As) distribution in the Shimen realgar mining area, the largest in Asia, by integrating machine learning models with kriging interpolation and feature selection techniques. The results show that the Random Forest (RF) model achieved the best performance in predicting soil As concentration, with an R<sup>2</sup> of 0.84 for the test data. Incorporating environmental variables improved the spatial prediction accuracy, with RF (R<sup>2</sup> = 0.76, RMSE = 24.68<!-- --> <!-- -->mg/kg) and Random Forest Regression Kriging (RFRK) (R<sup>2</sup> = 0.78, RMSE = 23.46<!-- --> <!-- -->mg/kg) outperforming ordinary kriging and geographically weighted regression kriging. Importance analysis and recursive feature elimination further optimized the model, leading to a 5% increase in R<sup>2</sup> and a reduction of RMSE by 8%–12.4%. The optimized RFRK model accurately captured the spatial distribution of As in the mining area, revealing the outward diffusion pattern of As from the smelting plant. The findings highlight the critical role of feature selection in improving prediction accuracy in highly polluted and complex terrain regions, an aspect that has often been overlooked in previous studies. This study provides a practical framework for spatial prediction of contaminants in similar areas, enhancing the understanding of pollution distribution.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"33 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.137994","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate prediction of heavy metals (HMs) spatial distribution in mining areas is crucial for pollution management. However, predicting the spatial distribution of HMs remains a significant challenge in mining areas with complex terrain and variable contaminant transport pathways. This study aims to optimize the spatial prediction of arsenic (As) distribution in the Shimen realgar mining area, the largest in Asia, by integrating machine learning models with kriging interpolation and feature selection techniques. The results show that the Random Forest (RF) model achieved the best performance in predicting soil As concentration, with an R2 of 0.84 for the test data. Incorporating environmental variables improved the spatial prediction accuracy, with RF (R2 = 0.76, RMSE = 24.68 mg/kg) and Random Forest Regression Kriging (RFRK) (R2 = 0.78, RMSE = 23.46 mg/kg) outperforming ordinary kriging and geographically weighted regression kriging. Importance analysis and recursive feature elimination further optimized the model, leading to a 5% increase in R2 and a reduction of RMSE by 8%–12.4%. The optimized RFRK model accurately captured the spatial distribution of As in the mining area, revealing the outward diffusion pattern of As from the smelting plant. The findings highlight the critical role of feature selection in improving prediction accuracy in highly polluted and complex terrain regions, an aspect that has often been overlooked in previous studies. This study provides a practical framework for spatial prediction of contaminants in similar areas, enhancing the understanding of pollution distribution.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.