Improving Water Table Kinematic Conditions With Unsaturated Flow Insights

IF 4.6 1区 地球科学 Q2 ENVIRONMENTAL SCIENCES Water Resources Research Pub Date : 2025-03-18 DOI:10.1029/2024wr038724
Jun-Hong Lin, Ying-Fan Lin
{"title":"Improving Water Table Kinematic Conditions With Unsaturated Flow Insights","authors":"Jun-Hong Lin, Ying-Fan Lin","doi":"10.1029/2024wr038724","DOIUrl":null,"url":null,"abstract":"Analytical models interpreting aquifer pumping test data often rely on water table kinematic conditions that assume instantaneous gravity drainage, leading to underestimation of specific yield during the drainage process. This study derives a new water table condition based on a coupled saturated-unsaturated flow model that fully accounts for both unsaturated and saturated flow dynamics. The new condition incorporates the hydraulic properties of the unsaturated zone, providing a more accurate representation of physical processes while maintaining mathematical tractability. Applied to a groundwater flow model for a pumping problem, the drawdown solution is derived using integral transformations. The proposed model is validated using field data from a series of pumping tests at the Boise Hydrogeophysical Research Site in Idaho. The results demonstrate that the new water table condition provides more reliable estimates of specific yield, effectively addressing the underestimation issue associated with existing models. Moreover, the model requires no additional empirical parameters, making it a practical tool for characterizing unconfined aquifer properties.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"55 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024wr038724","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Analytical models interpreting aquifer pumping test data often rely on water table kinematic conditions that assume instantaneous gravity drainage, leading to underestimation of specific yield during the drainage process. This study derives a new water table condition based on a coupled saturated-unsaturated flow model that fully accounts for both unsaturated and saturated flow dynamics. The new condition incorporates the hydraulic properties of the unsaturated zone, providing a more accurate representation of physical processes while maintaining mathematical tractability. Applied to a groundwater flow model for a pumping problem, the drawdown solution is derived using integral transformations. The proposed model is validated using field data from a series of pumping tests at the Boise Hydrogeophysical Research Site in Idaho. The results demonstrate that the new water table condition provides more reliable estimates of specific yield, effectively addressing the underestimation issue associated with existing models. Moreover, the model requires no additional empirical parameters, making it a practical tool for characterizing unconfined aquifer properties.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Water Resources Research
Water Resources Research 环境科学-湖沼学
CiteScore
8.80
自引率
13.00%
发文量
599
审稿时长
3.5 months
期刊介绍: Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.
期刊最新文献
STREAM-Sat: A Novel Near-Realtime Quasi-Global Satellite-Only Ensemble Precipitation Dataset Hydrologic Regime Determines Catchment-Scale Dissolved Carbon Export Patterns Monitoring Discharge and Suspended Sediments in the Yangtze River Tidal Reach Using Coastal Acoustic Tomography Enhancing Streamflow Reanalysis Across the Conterminous US Leveraging Multiple Gridded Precipitation Data Sets A Scale-Adaptive Urban Hydrologic Framework: Incorporating Network-Level Storm Drainage Pipes Representation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1