Xiao Li, Jian Wang, Wei Yin, Jianfeng Xu, Haibing Xiao, Hongying Zhao, Yongyong Shi, Lei Wang, Rui Hao, Haiyan Li, Yiming Huang, Hai Jiang, Zhihua Shi
{"title":"Hydrologic Regime Determines Catchment-Scale Dissolved Carbon Export Patterns","authors":"Xiao Li, Jian Wang, Wei Yin, Jianfeng Xu, Haibing Xiao, Hongying Zhao, Yongyong Shi, Lei Wang, Rui Hao, Haiyan Li, Yiming Huang, Hai Jiang, Zhihua Shi","doi":"10.1029/2024wr038221","DOIUrl":null,"url":null,"abstract":"Hydrologic regimes are affecting terrestrial carbon transformation, chemical weathering and lateral transport. However, its impacts on dissolved carbon export patterns remains elusive. In this study, we collected a 2-year high-frequency dissolved inorganic (DIC) and organic carbon (DOC) dataset, namely a wet year (Rainfall = 1,158 mm) and a dry year (Rainfall = 603 mm). The results showed that drought led to a significant decrease in dissolved carbon concentration and discharge during the monitoring period. During non-storm periods, DIC and DOC shifted from dilution and chemostatic to enrichment patterns from wet to dry years, respectively. However, the export patterns were reversed during storm periods. DIC and DOC export patterns in wet year were dominated by dilution and chemostatic, respectively, while both patterns were dominated by dilution in dry year. Structural equation models revealed that the aridity index and temperature may affect dissolved carbon export patterns. We further classified storm events into three major types and conceptualized catchment-scale transport mechanisms for dissolved carbon. Dry-AMCs events result in DIC dilution and DOC chemostatic behavior, whereas Wet-AMCs events result in DIC chemostatic and DOC enrichment behavior due to increased hydrological connectivity. The third type corresponds to extreme events, where larger overland flow often results in DIC dilution but DOC enrichment behavior. These findings reveal the predominant role of drought in altering carbon lateral export by decreasing concentrations and fluxes and modifying export patterns.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"214 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024wr038221","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrologic regimes are affecting terrestrial carbon transformation, chemical weathering and lateral transport. However, its impacts on dissolved carbon export patterns remains elusive. In this study, we collected a 2-year high-frequency dissolved inorganic (DIC) and organic carbon (DOC) dataset, namely a wet year (Rainfall = 1,158 mm) and a dry year (Rainfall = 603 mm). The results showed that drought led to a significant decrease in dissolved carbon concentration and discharge during the monitoring period. During non-storm periods, DIC and DOC shifted from dilution and chemostatic to enrichment patterns from wet to dry years, respectively. However, the export patterns were reversed during storm periods. DIC and DOC export patterns in wet year were dominated by dilution and chemostatic, respectively, while both patterns were dominated by dilution in dry year. Structural equation models revealed that the aridity index and temperature may affect dissolved carbon export patterns. We further classified storm events into three major types and conceptualized catchment-scale transport mechanisms for dissolved carbon. Dry-AMCs events result in DIC dilution and DOC chemostatic behavior, whereas Wet-AMCs events result in DIC chemostatic and DOC enrichment behavior due to increased hydrological connectivity. The third type corresponds to extreme events, where larger overland flow often results in DIC dilution but DOC enrichment behavior. These findings reveal the predominant role of drought in altering carbon lateral export by decreasing concentrations and fluxes and modifying export patterns.
期刊介绍:
Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.