Qiang Guo , Moukun Fang , Stepan Douplii , Yani Wang
{"title":"Pattern synthesis of sparse linear arrays based on the atomic norm minimization and alternating direction method of multipliers approach","authors":"Qiang Guo , Moukun Fang , Stepan Douplii , Yani Wang","doi":"10.1016/j.dsp.2025.105160","DOIUrl":null,"url":null,"abstract":"<div><div>To address the mesh mismatch issue and enhance array performance, this paper proposes a design algorithm for sparse reconfigurable linear arrays based on the ANM-ADMM framework. Initially, the algorithm formulates a meshless sparse optimization model grounded on the low-dimensional semidefinite programming theory of atomic norm minimization. This model simultaneously optimizes the quantity of array elements, their placements, and their excitations. Subsequently, an efficient iterative algorithm solves the low-rank Toeplitz matrix using the alternating direction method of multipliers (ADMM). Finally, the Root-MUSIC algorithm is employed to determine the locations and excitations of the array components in the sparsely reconfigurable linear array, which is designed using the ANM-ADMM approach. Since the proposed algorithm operates in a continuous domain, it effectively addresses the mesh mismatch problem, thereby enhancing the matching accuracy of reconstructed linear array beampatterns. Simulation results demonstrate that compared to existing algorithms, the proposed method requires fewer array elements while achieving higher matching accuracy and better fitting performance.</div></div>","PeriodicalId":51011,"journal":{"name":"Digital Signal Processing","volume":"162 ","pages":"Article 105160"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1051200425001824","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
To address the mesh mismatch issue and enhance array performance, this paper proposes a design algorithm for sparse reconfigurable linear arrays based on the ANM-ADMM framework. Initially, the algorithm formulates a meshless sparse optimization model grounded on the low-dimensional semidefinite programming theory of atomic norm minimization. This model simultaneously optimizes the quantity of array elements, their placements, and their excitations. Subsequently, an efficient iterative algorithm solves the low-rank Toeplitz matrix using the alternating direction method of multipliers (ADMM). Finally, the Root-MUSIC algorithm is employed to determine the locations and excitations of the array components in the sparsely reconfigurable linear array, which is designed using the ANM-ADMM approach. Since the proposed algorithm operates in a continuous domain, it effectively addresses the mesh mismatch problem, thereby enhancing the matching accuracy of reconstructed linear array beampatterns. Simulation results demonstrate that compared to existing algorithms, the proposed method requires fewer array elements while achieving higher matching accuracy and better fitting performance.
期刊介绍:
Digital Signal Processing: A Review Journal is one of the oldest and most established journals in the field of signal processing yet it aims to be the most innovative. The Journal invites top quality research articles at the frontiers of research in all aspects of signal processing. Our objective is to provide a platform for the publication of ground-breaking research in signal processing with both academic and industrial appeal.
The journal has a special emphasis on statistical signal processing methodology such as Bayesian signal processing, and encourages articles on emerging applications of signal processing such as:
• big data• machine learning• internet of things• information security• systems biology and computational biology,• financial time series analysis,• autonomous vehicles,• quantum computing,• neuromorphic engineering,• human-computer interaction and intelligent user interfaces,• environmental signal processing,• geophysical signal processing including seismic signal processing,• chemioinformatics and bioinformatics,• audio, visual and performance arts,• disaster management and prevention,• renewable energy,