Jilong Peng , Xunqian Zhang , Rongqing Qin , Fang Lai , Na Shi , Qinggang Ren , Kungang Chai
{"title":"A chlorine-rich Zn-based metal-organic framework for efficient separation of C3H6/C2H4 and C2H6/C2H4","authors":"Jilong Peng , Xunqian Zhang , Rongqing Qin , Fang Lai , Na Shi , Qinggang Ren , Kungang Chai","doi":"10.1016/j.micromeso.2025.113600","DOIUrl":null,"url":null,"abstract":"<div><div>In the petrochemical industry, efficiently achieving one-step purification of ethylene (C<sub>2</sub>H<sub>4</sub>) from propylene (C<sub>3</sub>H<sub>6</sub>) or ethane (C<sub>2</sub>H<sub>6</sub>) is a highly sought-after yet challenging task. Herein, we present a chlorine-rich Zn-based metal-organic framework (DMOF-1-Cl<sub>2</sub>) that retains the essential topology of the parent DMOF-1 through the incorporation of 2,5-dichloroterephthalate linkers. The chlorine atoms within the square pores of DMOF-1-Cl<sub>2</sub>, due to their high electronegativity, serve as potential adsorption sites. Gas adsorptive experiments revealed its preferential adsorption of C<sub>3</sub>H<sub>6</sub> and C<sub>2</sub>H<sub>6</sub> over C<sub>2</sub>H<sub>4</sub> at different temperatures. Ideal adsorption solution theory calculation revealed that the selectivity of DMOF-1-Cl<sub>2</sub> for C<sub>3</sub>H<sub>6</sub>/C<sub>2</sub>H<sub>4</sub> and C<sub>2</sub>H<sub>6</sub>/C<sub>2</sub>H<sub>4</sub> reaches 20.8 and 2.2 at 313 K, respectively, outperforming its counterpart (DMOF-1-Br<sub>2</sub>) and most previously reported adsorbents. Theoretical calculations indicated that the gas molecules are primarily distributed around the chlorine atoms with multiple interactions. Furthermore, dynamic breakthrough experiments fully demonstrated the actual potential for achieving one-step purification of polymer-grade C<sub>2</sub>H<sub>4</sub>, in which DMOF-1-Cl<sub>2</sub> displayed high productivity of 206.1 and 31.6 L kg<sup>−1</sup> from C<sub>3</sub>H<sub>6</sub>/C<sub>2</sub>H<sub>4</sub> (2/5, v/v) and C<sub>2</sub>H<sub>6</sub>/C<sub>2</sub>H<sub>4</sub> (1/9, v/v), respectively. Despite the fact that the yield of C<sub>2</sub>H<sub>4</sub> separation from C<sub>2</sub>H<sub>6</sub>/C<sub>2</sub>H<sub>4</sub> mixtures is not extremely high, it still remains at a satisfactory level, demonstrating the practical value and potential of DMOF-1-Cl<sub>2</sub> for industrial applications.</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"390 ","pages":"Article 113600"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181125001143","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In the petrochemical industry, efficiently achieving one-step purification of ethylene (C2H4) from propylene (C3H6) or ethane (C2H6) is a highly sought-after yet challenging task. Herein, we present a chlorine-rich Zn-based metal-organic framework (DMOF-1-Cl2) that retains the essential topology of the parent DMOF-1 through the incorporation of 2,5-dichloroterephthalate linkers. The chlorine atoms within the square pores of DMOF-1-Cl2, due to their high electronegativity, serve as potential adsorption sites. Gas adsorptive experiments revealed its preferential adsorption of C3H6 and C2H6 over C2H4 at different temperatures. Ideal adsorption solution theory calculation revealed that the selectivity of DMOF-1-Cl2 for C3H6/C2H4 and C2H6/C2H4 reaches 20.8 and 2.2 at 313 K, respectively, outperforming its counterpart (DMOF-1-Br2) and most previously reported adsorbents. Theoretical calculations indicated that the gas molecules are primarily distributed around the chlorine atoms with multiple interactions. Furthermore, dynamic breakthrough experiments fully demonstrated the actual potential for achieving one-step purification of polymer-grade C2H4, in which DMOF-1-Cl2 displayed high productivity of 206.1 and 31.6 L kg−1 from C3H6/C2H4 (2/5, v/v) and C2H6/C2H4 (1/9, v/v), respectively. Despite the fact that the yield of C2H4 separation from C2H6/C2H4 mixtures is not extremely high, it still remains at a satisfactory level, demonstrating the practical value and potential of DMOF-1-Cl2 for industrial applications.
期刊介绍:
Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal.
Topics which are particularly of interest include:
All aspects of natural microporous and mesoporous solids
The synthesis of crystalline or amorphous porous materials
The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic
The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions
All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials
Adsorption (and other separation techniques) using microporous or mesoporous adsorbents
Catalysis by microporous and mesoporous materials
Host/guest interactions
Theoretical chemistry and modelling of host/guest interactions
All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.