Advanced deep learning framework for ECG arrhythmia classification using 1D-CNN with attention mechanism

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Knowledge-Based Systems Pub Date : 2025-03-14 DOI:10.1016/j.knosys.2025.113301
Mohammed Guhdar , Abdulhakeem O. Mohammed , Ramadhan J. Mstafa
{"title":"Advanced deep learning framework for ECG arrhythmia classification using 1D-CNN with attention mechanism","authors":"Mohammed Guhdar ,&nbsp;Abdulhakeem O. Mohammed ,&nbsp;Ramadhan J. Mstafa","doi":"10.1016/j.knosys.2025.113301","DOIUrl":null,"url":null,"abstract":"<div><div>Cardiovascular diseases, particularly cardiac arrhythmias, remain a leading cause of global mortality, necessitating efficient and accurate diagnostic tools. Despite advances in deep learning for ECG analysis, current models face challenges in cross-population performance, signal noise robustness, limited training data efficiency, and clinical result interpretability. Additionally, most current approaches struggle to generalize across different ECG databases and require extensive computational resources for real-time analysis. This paper presents a novel hybrid deep learning framework for automated ECG analysis, combining one-dimensional convolutional neural networks (1D-CNN) with a specialized attention mechanism. The proposed architecture implements a four-stage CNN backbone enhanced with a squeeze-and-excitation attention block, enabling adaptive feature selection across multiple scales. The model incorporates advanced regularization techniques, including focal loss, L2 regularization, and an ensemble approach with mixed precision training. We conducted extensive experiments across multiple datasets to evaluate generalization capabilities. This study utilizes two standard databases: the MIT-BIH Arrhythmia Database (48 half-hour recordings sampled at 360 Hz) and the PTB Diagnostic ECG Database (549 records from 290 subjects sampled at 1000 Hz). Through rigorous validation including five-fold cross-validation and statistical significance testing, our model attained remarkable performance, achieving 99.48% accuracy on MIT-BIH, 99.83% accuracy on PTB, and 99.64% accuracy on the combined dataset, with corresponding F1-scores of 0.99, 1.00, and 1.00 respectively. The findings demonstrate robust generalization across varied ECG morphologies and recording conditions, with particular effectiveness in handling class imbalance without data augmentation. The model’s reliable performance across multiple datasets indicates significant potential for clinical applications in automated cardiac diagnostics.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"315 ","pages":"Article 113301"},"PeriodicalIF":7.2000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095070512500348X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiovascular diseases, particularly cardiac arrhythmias, remain a leading cause of global mortality, necessitating efficient and accurate diagnostic tools. Despite advances in deep learning for ECG analysis, current models face challenges in cross-population performance, signal noise robustness, limited training data efficiency, and clinical result interpretability. Additionally, most current approaches struggle to generalize across different ECG databases and require extensive computational resources for real-time analysis. This paper presents a novel hybrid deep learning framework for automated ECG analysis, combining one-dimensional convolutional neural networks (1D-CNN) with a specialized attention mechanism. The proposed architecture implements a four-stage CNN backbone enhanced with a squeeze-and-excitation attention block, enabling adaptive feature selection across multiple scales. The model incorporates advanced regularization techniques, including focal loss, L2 regularization, and an ensemble approach with mixed precision training. We conducted extensive experiments across multiple datasets to evaluate generalization capabilities. This study utilizes two standard databases: the MIT-BIH Arrhythmia Database (48 half-hour recordings sampled at 360 Hz) and the PTB Diagnostic ECG Database (549 records from 290 subjects sampled at 1000 Hz). Through rigorous validation including five-fold cross-validation and statistical significance testing, our model attained remarkable performance, achieving 99.48% accuracy on MIT-BIH, 99.83% accuracy on PTB, and 99.64% accuracy on the combined dataset, with corresponding F1-scores of 0.99, 1.00, and 1.00 respectively. The findings demonstrate robust generalization across varied ECG morphologies and recording conditions, with particular effectiveness in handling class imbalance without data augmentation. The model’s reliable performance across multiple datasets indicates significant potential for clinical applications in automated cardiac diagnostics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
期刊最新文献
User disambiguation learning for precise shared-account marketing: A hierarchical self-attentive sequential recommendation method OptNet: Optimization-inspired network beyond deep unfolding for structural artifact reduction Graph out-of-distribution generalization through contrastive learning paradigm Boosting semi-supervised regressor via confidence-weighted consistency regularization Advanced deep learning framework for ECG arrhythmia classification using 1D-CNN with attention mechanism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1