{"title":"Synthetic seismograms in transversely isotropic and elastic media below ocean floor","authors":"Jiangcun Zhou , Ernian Pan , Zhiqing Zhang","doi":"10.1016/j.enganabound.2025.106218","DOIUrl":null,"url":null,"abstract":"<div><div>Earthquakes can occur onshore and offshore. When it occurs offshore, an analytical model is needed where both the water layers and rock layers have to be considered. In this paper, we develop such a new solution when a general dislocation source is located in any layer of the transversely isotropic and elastic rock media. This novel and comprehensive method is based on the Fourier-Bessel series system of vector functions combined with the unconditionally stable dual-variable and position method. Based on the new vector system, the discrete dislocation Love numbers are pre-calculated and saved for obtaining the Green's functions due to a general dislocation source in the water/rock layered system. The problem is first solved in the time-harmonic domain, and then transformed back to the time domain via the numerical Gaussian quadrature. After validating the accuracy of the proposed method, numerical examples are presented for the synthetic seismograms on the seabed (ocean floor) and the time-variation of the displacement and velocity on the ocean surface.</div></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"175 ","pages":"Article 106218"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Analysis with Boundary Elements","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955799725001067","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Earthquakes can occur onshore and offshore. When it occurs offshore, an analytical model is needed where both the water layers and rock layers have to be considered. In this paper, we develop such a new solution when a general dislocation source is located in any layer of the transversely isotropic and elastic rock media. This novel and comprehensive method is based on the Fourier-Bessel series system of vector functions combined with the unconditionally stable dual-variable and position method. Based on the new vector system, the discrete dislocation Love numbers are pre-calculated and saved for obtaining the Green's functions due to a general dislocation source in the water/rock layered system. The problem is first solved in the time-harmonic domain, and then transformed back to the time domain via the numerical Gaussian quadrature. After validating the accuracy of the proposed method, numerical examples are presented for the synthetic seismograms on the seabed (ocean floor) and the time-variation of the displacement and velocity on the ocean surface.
期刊介绍:
This journal is specifically dedicated to the dissemination of the latest developments of new engineering analysis techniques using boundary elements and other mesh reduction methods.
Boundary element (BEM) and mesh reduction methods (MRM) are very active areas of research with the techniques being applied to solve increasingly complex problems. The journal stresses the importance of these applications as well as their computational aspects, reliability and robustness.
The main criteria for publication will be the originality of the work being reported, its potential usefulness and applications of the methods to new fields.
In addition to regular issues, the journal publishes a series of special issues dealing with specific areas of current research.
The journal has, for many years, provided a channel of communication between academics and industrial researchers working in mesh reduction methods
Fields Covered:
• Boundary Element Methods (BEM)
• Mesh Reduction Methods (MRM)
• Meshless Methods
• Integral Equations
• Applications of BEM/MRM in Engineering
• Numerical Methods related to BEM/MRM
• Computational Techniques
• Combination of Different Methods
• Advanced Formulations.