{"title":"Linear and nonlinear transient response of sandwich beams made of FG-GPLRC faces and FGP core under moving distributed masses","authors":"Nuttawit Wattanasakulpong , Wachirawit Songsuwan","doi":"10.1016/j.enganabound.2025.106221","DOIUrl":null,"url":null,"abstract":"<div><div>This study considers transient response of sandwich beams produced from functionally graded graphene platelets-reinforced composite faces and functionally graded porous core under the action of various types of moving distributed masses. The equations of motion are developed by the energy method using a von Kármán type nonlinear strain-displacement relationship. Different micromechanical models are modified to approximate the effective material properties at the faces and the core. In order to solve the nonlinear system of this problem, the Newton–Raphson iteration procedure, time-integration of Newmark, and the Chebyshev-Ritz method work together to solve the transient response of the beams related to different parameters, such as material distribution, moving mass distribution, mass distance, and others. Our research indicates that sandwich beams composed of a functionally graded porous core (Type 2) and a FG-V distribution of graphene platelets at the faces have demonstrated a remarkable capacity to tolerate dynamic deformation.</div></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"175 ","pages":"Article 106221"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Analysis with Boundary Elements","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955799725001092","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study considers transient response of sandwich beams produced from functionally graded graphene platelets-reinforced composite faces and functionally graded porous core under the action of various types of moving distributed masses. The equations of motion are developed by the energy method using a von Kármán type nonlinear strain-displacement relationship. Different micromechanical models are modified to approximate the effective material properties at the faces and the core. In order to solve the nonlinear system of this problem, the Newton–Raphson iteration procedure, time-integration of Newmark, and the Chebyshev-Ritz method work together to solve the transient response of the beams related to different parameters, such as material distribution, moving mass distribution, mass distance, and others. Our research indicates that sandwich beams composed of a functionally graded porous core (Type 2) and a FG-V distribution of graphene platelets at the faces have demonstrated a remarkable capacity to tolerate dynamic deformation.
期刊介绍:
This journal is specifically dedicated to the dissemination of the latest developments of new engineering analysis techniques using boundary elements and other mesh reduction methods.
Boundary element (BEM) and mesh reduction methods (MRM) are very active areas of research with the techniques being applied to solve increasingly complex problems. The journal stresses the importance of these applications as well as their computational aspects, reliability and robustness.
The main criteria for publication will be the originality of the work being reported, its potential usefulness and applications of the methods to new fields.
In addition to regular issues, the journal publishes a series of special issues dealing with specific areas of current research.
The journal has, for many years, provided a channel of communication between academics and industrial researchers working in mesh reduction methods
Fields Covered:
• Boundary Element Methods (BEM)
• Mesh Reduction Methods (MRM)
• Meshless Methods
• Integral Equations
• Applications of BEM/MRM in Engineering
• Numerical Methods related to BEM/MRM
• Computational Techniques
• Combination of Different Methods
• Advanced Formulations.