José Fernando Solanilla-Duque, Diego Fernando Roa-Acosta, Jesús Eduardo Bravo-Gómez
{"title":"Effect of pH and concentration on physicochemical, adsorption kinetics and rheology properties of quinoa protein: Functional correlations","authors":"José Fernando Solanilla-Duque, Diego Fernando Roa-Acosta, Jesús Eduardo Bravo-Gómez","doi":"10.1016/j.jciso.2025.100131","DOIUrl":null,"url":null,"abstract":"<div><div>In the present manuscript protein isolates and hydrolysates have countless applications in the food industry due to their functional (solubility, emulsifying power, adsorption capacity, foaming capacity) and nutritional properties [1]. In the present manuscript, the interfacial, rheological, and functional properties of the quinoa protein isolate (QPI) at pH 5 and pH 7 were studied. Dilatational module behavior versus surface pressure was evaluated, using the Frumkin-Lucassen model for QPI, which showed a good fit in the first part of the curve (before achieving a plateau) evidencing the formation of the first interfacial layer. Moreover, the gel formation from QPI was evaluated at different concentrations (5, 10 and 15 % (w/w)). Rheological measurements indicated that higher protein concentrations at pH 5 resuts in a raise in the gel point temperature. It was also found that QPI showed better emulsifying and foaming capacity at pH 5 than at pH 7. An increase in the QPI concentration in the emulsion formulation produces greater thermal stability. The results obtained show the feasibility of using a quinoa protein isolate as an ingredient in functional foods (Modified (enriched or enhanced) foods, conventional foods, medicinal foods and foods for dietetic use.).</div></div>","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":"18 ","pages":"Article 100131"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCIS open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666934X25000042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
In the present manuscript protein isolates and hydrolysates have countless applications in the food industry due to their functional (solubility, emulsifying power, adsorption capacity, foaming capacity) and nutritional properties [1]. In the present manuscript, the interfacial, rheological, and functional properties of the quinoa protein isolate (QPI) at pH 5 and pH 7 were studied. Dilatational module behavior versus surface pressure was evaluated, using the Frumkin-Lucassen model for QPI, which showed a good fit in the first part of the curve (before achieving a plateau) evidencing the formation of the first interfacial layer. Moreover, the gel formation from QPI was evaluated at different concentrations (5, 10 and 15 % (w/w)). Rheological measurements indicated that higher protein concentrations at pH 5 resuts in a raise in the gel point temperature. It was also found that QPI showed better emulsifying and foaming capacity at pH 5 than at pH 7. An increase in the QPI concentration in the emulsion formulation produces greater thermal stability. The results obtained show the feasibility of using a quinoa protein isolate as an ingredient in functional foods (Modified (enriched or enhanced) foods, conventional foods, medicinal foods and foods for dietetic use.).