Experimental modeling of equilibrium surface for chip flow angle catastrophe based on transfer learning and catastrophe theory

IF 4.6 2区 工程技术 Q2 ENGINEERING, MANUFACTURING CIRP Journal of Manufacturing Science and Technology Pub Date : 2025-03-18 DOI:10.1016/j.cirpj.2025.03.002
Yong Wang , Liangshan Xiong , Shaonan Zhang , Baoyi Zhu
{"title":"Experimental modeling of equilibrium surface for chip flow angle catastrophe based on transfer learning and catastrophe theory","authors":"Yong Wang ,&nbsp;Liangshan Xiong ,&nbsp;Shaonan Zhang ,&nbsp;Baoyi Zhu","doi":"10.1016/j.cirpj.2025.03.002","DOIUrl":null,"url":null,"abstract":"<div><div>It is difficult to accurately predict the critical depth of cut and the chip flow angle (CFA) using a single method provided by catastrophe theory. To solve this problem, an experimental modeling method for catastrophe phenomena combining transfer learning and catastrophe theory is proposed. This method is successfully used for the modeling of the equilibrium surface of the CFA catastrophe. First, the canonical equilibrium surface of cusp catastrophe provided by catastrophe theory is discretized in two paths (differentiated by <span><math><mi>d</mi></math></span>), and a series of canonical equilibrium point coordinates (<span><math><mrow><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>x</mi></mrow></math></span>) are obtained. Then, a neural network model simulating the canonical equilibrium surface with three input nodes (<span><math><mrow><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>d</mi></mrow></math></span>) and one output node (<span><math><mi>x</mi></math></span>) is constructed and trained. Next, the transfer learning method is applied to freeze the model and add fully connected layers before and after it to realize the required diffeomorphism from the actual parameters to the canonical parameters. The front layers have 3 nodes (<span><math><mrow><mi>f</mi><mo>,</mo><mspace></mspace><msub><mrow><mi>a</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>,</mo><mi>d</mi><mo>′</mo></mrow></math></span>) and the rear layers have 1 node (<span><math><mi>φ</mi></math></span>). Finally, the model with the additional layers is fine-tuned using experimental data to obtain the actual equilibrium surface simulation model for the CFA catastrophe. The test results show that the prediction accuracies of the constructed model regarding the CFA and the critical depth of cut are better than those of the models established by other methods.</div></div>","PeriodicalId":56011,"journal":{"name":"CIRP Journal of Manufacturing Science and Technology","volume":"59 ","pages":"Pages 76-82"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CIRP Journal of Manufacturing Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755581725000331","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

It is difficult to accurately predict the critical depth of cut and the chip flow angle (CFA) using a single method provided by catastrophe theory. To solve this problem, an experimental modeling method for catastrophe phenomena combining transfer learning and catastrophe theory is proposed. This method is successfully used for the modeling of the equilibrium surface of the CFA catastrophe. First, the canonical equilibrium surface of cusp catastrophe provided by catastrophe theory is discretized in two paths (differentiated by d), and a series of canonical equilibrium point coordinates (u,v,x) are obtained. Then, a neural network model simulating the canonical equilibrium surface with three input nodes (u,v,d) and one output node (x) is constructed and trained. Next, the transfer learning method is applied to freeze the model and add fully connected layers before and after it to realize the required diffeomorphism from the actual parameters to the canonical parameters. The front layers have 3 nodes (f,ap,d) and the rear layers have 1 node (φ). Finally, the model with the additional layers is fine-tuned using experimental data to obtain the actual equilibrium surface simulation model for the CFA catastrophe. The test results show that the prediction accuracies of the constructed model regarding the CFA and the critical depth of cut are better than those of the models established by other methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CIRP Journal of Manufacturing Science and Technology
CIRP Journal of Manufacturing Science and Technology Engineering-Industrial and Manufacturing Engineering
CiteScore
9.10
自引率
6.20%
发文量
166
审稿时长
63 days
期刊介绍: The CIRP Journal of Manufacturing Science and Technology (CIRP-JMST) publishes fundamental papers on manufacturing processes, production equipment and automation, product design, manufacturing systems and production organisations up to the level of the production networks, including all the related technical, human and economic factors. Preference is given to contributions describing research results whose feasibility has been demonstrated either in a laboratory or in the industrial praxis. Case studies and review papers on specific issues in manufacturing science and technology are equally encouraged.
期刊最新文献
Experimental modeling of equilibrium surface for chip flow angle catastrophe based on transfer learning and catastrophe theory Active milling chatter control based on a modified comb filter and robust mixed sensitivity controller Exploring multi-couple field modelling and simulation for surface roughness in MRSTP of blade tenons using shear thickening effect and magnetohydrodynamics Optimizing electrochemical turning of titanium matrix composites: Enhancing efficiency with inclined cathode tools Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1