Multiple drivers of the recent South Lhonak glacial lake outburst flood in Sikkim Himalaya and its aftermath on Teesta River Valley

Soumik Saha , Biswajit Bera , Debashish Sengupta , Uttam Mukhopadhyay , Debasis Ghosh , Lakpa Tamang , Sumana Bhattacharjee , Nairita Sengupta
{"title":"Multiple drivers of the recent South Lhonak glacial lake outburst flood in Sikkim Himalaya and its aftermath on Teesta River Valley","authors":"Soumik Saha ,&nbsp;Biswajit Bera ,&nbsp;Debashish Sengupta ,&nbsp;Uttam Mukhopadhyay ,&nbsp;Debasis Ghosh ,&nbsp;Lakpa Tamang ,&nbsp;Sumana Bhattacharjee ,&nbsp;Nairita Sengupta","doi":"10.1016/j.geogeo.2025.100375","DOIUrl":null,"url":null,"abstract":"<div><div>Glacial lake outburst floods (GLOFs) are the most severe cryospheric hazard in the ‘Third Pole’ region, encompassing the Tibetan Plateau and surrounding areas including the Himalayas, Hindu Kush, Kunlun, and Tianshan mountains. Understanding the proper response of glaciers to the current situation of global warming is vital because of their role as a water source in the Asian region. Numerous glacial lakes are formed in the higher Himalayan areas due to the contemporary increase in global temperature. The upper part of the Teesta Basin, Sikkim hosts several glacial lakes including one of the largest and fastest growing South Lhonak Lake (5200 m from the mean sea level). Recently, a devastating GLOF event occurred in South Lhonak Lake after the breaching of moraine dams on midnight of October 3, 2023. This disastrous GLOF event collapsed the Chungthang Dam, located approximately 65 km downstream of the lake and accelerated extensive casualties along with infrastructural damages. It is identified that; the impact of cloudburst may be a significant triggering factor behind this event. The satellite imagery and digital elevation models also revealed that a sudden collapse of lateral moraine eventually produced an impulse wave which accelerated the breaching process. Additionally, this study also combined with advanced remote sensing applications. Satellite imageries indicate a huge reduction of the lake area after the GLOF event (1.66 km<sup>2</sup> before the GLOF event and 0.63 km<sup>2</sup> after the GLOF). The overtopping volume of the water has been estimated as approximately 106,400 <span><math><msup><mrow><mi>m</mi></mrow><mn>3</mn></msup></math></span>, with a duration of 12.78 s. The peak discharge during overtopping touched approximately 16,651.02 cumecs, indicating the maximum flow rate during the phase. The results have been validated by the high-resolution satellite data across various sites.</div></div>","PeriodicalId":100582,"journal":{"name":"Geosystems and Geoenvironment","volume":"4 2","pages":"Article 100375"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosystems and Geoenvironment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772883825000251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Glacial lake outburst floods (GLOFs) are the most severe cryospheric hazard in the ‘Third Pole’ region, encompassing the Tibetan Plateau and surrounding areas including the Himalayas, Hindu Kush, Kunlun, and Tianshan mountains. Understanding the proper response of glaciers to the current situation of global warming is vital because of their role as a water source in the Asian region. Numerous glacial lakes are formed in the higher Himalayan areas due to the contemporary increase in global temperature. The upper part of the Teesta Basin, Sikkim hosts several glacial lakes including one of the largest and fastest growing South Lhonak Lake (5200 m from the mean sea level). Recently, a devastating GLOF event occurred in South Lhonak Lake after the breaching of moraine dams on midnight of October 3, 2023. This disastrous GLOF event collapsed the Chungthang Dam, located approximately 65 km downstream of the lake and accelerated extensive casualties along with infrastructural damages. It is identified that; the impact of cloudburst may be a significant triggering factor behind this event. The satellite imagery and digital elevation models also revealed that a sudden collapse of lateral moraine eventually produced an impulse wave which accelerated the breaching process. Additionally, this study also combined with advanced remote sensing applications. Satellite imageries indicate a huge reduction of the lake area after the GLOF event (1.66 km2 before the GLOF event and 0.63 km2 after the GLOF). The overtopping volume of the water has been estimated as approximately 106,400 m3, with a duration of 12.78 s. The peak discharge during overtopping touched approximately 16,651.02 cumecs, indicating the maximum flow rate during the phase. The results have been validated by the high-resolution satellite data across various sites.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
0
期刊最新文献
Geohazard impact and gas reservoir pressure dynamics in the Zagros Fold-Thrust Belt: An environmental perspective Petrogenesis of gneisses and granitoids from Southern Bastar Craton, India: A geochemical insight to crustal evolution Multiple drivers of the recent South Lhonak glacial lake outburst flood in Sikkim Himalaya and its aftermath on Teesta River Valley Tonian shoshonitic to ultrapotassic granitoids from Chhotanagpur Gneissic Complex, Eastern Indian Shield: Age, origin and tectonic implications Nappe tectonics in the Matomb-Hegba area, South-Central Cameroon: Implications on the tectonic evolution of the Yaoundé Group in the Central African Orogenic Belt
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1