Large exciton binding energy in atomically thin Cs3Bi2I9−xClx halide perovskite

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Computational Materials Science Pub Date : 2025-03-18 DOI:10.1016/j.commatsci.2025.113827
Srihari M. Kastuar, Chinedu E. Ekuma
{"title":"Large exciton binding energy in atomically thin Cs3Bi2I9−xClx halide perovskite","authors":"Srihari M. Kastuar,&nbsp;Chinedu E. Ekuma","doi":"10.1016/j.commatsci.2025.113827","DOIUrl":null,"url":null,"abstract":"<div><div>Two-dimensional lead-free perovskite Cs<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Bi<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>I<span><math><msub><mrow></mrow><mrow><mn>9</mn></mrow></msub></math></span> has emerged as a promising optoelectronic material due to its unique composition and quantum confinement effects. Herein, we present a comprehensive first-principles computational analysis of the many-body optoelectronic properties arising from the isoelectronic substitution of Cl into the I site in atomically thin Cs<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Bi<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>I<span><math><msub><mrow></mrow><mrow><mn>9</mn><mo>−</mo><mi>x</mi></mrow></msub></math></span>Cl<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span>. By solving the Bethe–Salpeter equation, we reveal the distinct optical properties of these doped and pristine monolayers, characterized by strongly bound excitons within an ultralow dielectric screening environment. Specifically, we demonstrate that the isoelectronic substitution of Cl in Cs<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Bi<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>I<span><math><msub><mrow></mrow><mrow><mn>9</mn></mrow></msub></math></span> enables significant tunability of quasiparticle states, leading to an unprecedented increase in the exciton binding energy from 1.32 eV to 2.66 eV, and a corresponding increase in the optical gap from the visible to the ultraviolet spectrum. The dominance of these strongly bound excitons in the ground-state properties highlights the substantial potential of these materials for high-efficiency optoelectronic applications, including light-emitting diodes, laser diodes, solar-blind photodetectors, and reconfigurable optical systems.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"253 ","pages":"Article 113827"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025625001703","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional lead-free perovskite Cs3Bi2I9 has emerged as a promising optoelectronic material due to its unique composition and quantum confinement effects. Herein, we present a comprehensive first-principles computational analysis of the many-body optoelectronic properties arising from the isoelectronic substitution of Cl into the I site in atomically thin Cs3Bi2I9xClx. By solving the Bethe–Salpeter equation, we reveal the distinct optical properties of these doped and pristine monolayers, characterized by strongly bound excitons within an ultralow dielectric screening environment. Specifically, we demonstrate that the isoelectronic substitution of Cl in Cs3Bi2I9 enables significant tunability of quasiparticle states, leading to an unprecedented increase in the exciton binding energy from 1.32 eV to 2.66 eV, and a corresponding increase in the optical gap from the visible to the ultraviolet spectrum. The dominance of these strongly bound excitons in the ground-state properties highlights the substantial potential of these materials for high-efficiency optoelectronic applications, including light-emitting diodes, laser diodes, solar-blind photodetectors, and reconfigurable optical systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
期刊最新文献
Predicting nucleation textures in interstitial-free steel: Combined effect of oriented nucleation theory and strain-induced boundary migration Density functional theory examination of surface defects, substitution, and passivation on HgTe (111) surface for applications in colloidal quantum dots atomes: Analysis, visualization, edition and post-processing of 3D atomic scale models Large exciton binding energy in atomically thin Cs3Bi2I9−xClx halide perovskite Multi-task learning of solute segregation energy across multiple alloy systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1