Improving customer retention in taxi industry using travel data analytics: A churn prediction study

IF 11 1区 管理学 Q1 BUSINESS Journal of Retailing and Consumer Services Pub Date : 2025-03-19 DOI:10.1016/j.jretconser.2025.104288
A.L.D. Loureiro , V.L. Miguéis , Álvaro Costa , Michel Ferreira
{"title":"Improving customer retention in taxi industry using travel data analytics: A churn prediction study","authors":"A.L.D. Loureiro ,&nbsp;V.L. Miguéis ,&nbsp;Álvaro Costa ,&nbsp;Michel Ferreira","doi":"10.1016/j.jretconser.2025.104288","DOIUrl":null,"url":null,"abstract":"<div><div>The retention of public transport users is widely acknowledged as a paramount challenge in the path towards the establishment of more sustainable cities and societies. In this setting, in which no contractual relationship with customers exists, an early and accurate prediction of whether a customer will remain with the company or leave, assumes great significance for businesses to develop effective retention strategies. This work focuses on this topic by identifying potential churners based on their past travel behavior. To achieve this, we developed a set of classification models using various machine learning techniques. These models were then employed as base learners within a stacking ensemble. All classifiers were developed with a profit-driven approach, optimizing for expected maximum profit. Finally, we calculated Shapley Additive Explanation values to enhance the interpretability of the proposed classifiers. The performance of the predictive models was evaluated using the data of taxi services recorded in a Portuguese city for 52 months. A broad range of predictors is proposed, including recency and frequency measures of taxi usage as well as others related to customers' satisfaction level. The predictive power of the models was also assessed for specific proportions of higher risk customers. All models have shown the capability to identify churners accurately. This study innovates in evaluating the one-to-one service provider company-customer relationship in the context of taxi industry. Retention actions to promote customers loyalty and enhance retention are also suggested.</div></div>","PeriodicalId":48399,"journal":{"name":"Journal of Retailing and Consumer Services","volume":"85 ","pages":"Article 104288"},"PeriodicalIF":11.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Retailing and Consumer Services","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969698925000670","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0

Abstract

The retention of public transport users is widely acknowledged as a paramount challenge in the path towards the establishment of more sustainable cities and societies. In this setting, in which no contractual relationship with customers exists, an early and accurate prediction of whether a customer will remain with the company or leave, assumes great significance for businesses to develop effective retention strategies. This work focuses on this topic by identifying potential churners based on their past travel behavior. To achieve this, we developed a set of classification models using various machine learning techniques. These models were then employed as base learners within a stacking ensemble. All classifiers were developed with a profit-driven approach, optimizing for expected maximum profit. Finally, we calculated Shapley Additive Explanation values to enhance the interpretability of the proposed classifiers. The performance of the predictive models was evaluated using the data of taxi services recorded in a Portuguese city for 52 months. A broad range of predictors is proposed, including recency and frequency measures of taxi usage as well as others related to customers' satisfaction level. The predictive power of the models was also assessed for specific proportions of higher risk customers. All models have shown the capability to identify churners accurately. This study innovates in evaluating the one-to-one service provider company-customer relationship in the context of taxi industry. Retention actions to promote customers loyalty and enhance retention are also suggested.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
20.40
自引率
14.40%
发文量
340
审稿时长
20 days
期刊介绍: The Journal of Retailing and Consumer Services is a prominent publication that serves as a platform for international and interdisciplinary research and discussions in the constantly evolving fields of retailing and services studies. With a specific emphasis on consumer behavior and policy and managerial decisions, the journal aims to foster contributions from academics encompassing diverse disciplines. The primary areas covered by the journal are: Retailing and the sale of goods The provision of consumer services, including transportation, tourism, and leisure.
期刊最新文献
Improving customer retention in taxi industry using travel data analytics: A churn prediction study AI service may backfire: Reduced service warmth due to service provider transformation Are assertive messages more effective in live marketing? Matching effects of anchor type and message assertiveness on purchase intention Decoding influencer marketing effectiveness on instagram: Insights from image, text, and influencer features Signaling cost to distributive fairness sensitive customers with price guarantee window
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1