Low-temperature dendrite-free Zn metal battery catalyzed by TiN-enhanced diffusion layer

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL Journal of Power Sources Pub Date : 2025-03-19 DOI:10.1016/j.jpowsour.2025.236810
Jing Zhang , Chenxiao Han , Lu Pan , Mannan Yang , Caiyin You , Yongzheng Zhang , Lujie Jia , Huihua Li , Ke Xu , Jian Su , Hongzhen Lin , Jian Wang
{"title":"Low-temperature dendrite-free Zn metal battery catalyzed by TiN-enhanced diffusion layer","authors":"Jing Zhang ,&nbsp;Chenxiao Han ,&nbsp;Lu Pan ,&nbsp;Mannan Yang ,&nbsp;Caiyin You ,&nbsp;Yongzheng Zhang ,&nbsp;Lujie Jia ,&nbsp;Huihua Li ,&nbsp;Ke Xu ,&nbsp;Jian Su ,&nbsp;Hongzhen Lin ,&nbsp;Jian Wang","doi":"10.1016/j.jpowsour.2025.236810","DOIUrl":null,"url":null,"abstract":"<div><div>Aqueous zinc metal batteries (AZMBs) are promising for large-scale energy storage due to their intrinsic safety and cost effectiveness. However, the cycling stability of metallic Zn anode under low temperature surroundings is severely hindered by harmful hydrogen evolution reaction (HER) and uncontrollable dendrite growth, which is ascribed to sluggish desolvation kinetics of hydrated [Zn(H<sub>2</sub>O)<sub>x</sub>]<sup>2+</sup> and blocked Zn<sup>2+</sup> diffusion kinetics. Herein, the strategy of “adsorption-sieving-catalysis” is initially proposed and the titanium nitride anchored on self-assembly porous reduced graphene oxide (TiN@RGO) as functional modulator is constructed on the surface of Zn anode. The abundant electrocatalytic sites on sieving pores significantly enhance interfacial desolvation, thereby accelerating Zn<sup>2+</sup> diffusion kinetics for dendrite-free plating. Consequently, TiN@RGO modified Zn delivers a long-term stripping/plating lifespan above 2600 h at 0.5 mA cm<sup>−2</sup> and maintains reversible stability of 500 h at 2 mA cm<sup>−2</sup> even under low temperature of 0 °C. Decreasing to as low as −8 °C, stable overpotential around 130 mV without any short-circuit is achieved. The coupled full cell with MnO<sub>2</sub> presents a high capacity retention of 72 % after 1000 cycles at 1.0 A g<sup>−1</sup> at low temperature of 0 °C, providing new insights for the rational design of efficient LT-AZMBs.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"640 ","pages":"Article 236810"},"PeriodicalIF":8.1000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775325006469","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous zinc metal batteries (AZMBs) are promising for large-scale energy storage due to their intrinsic safety and cost effectiveness. However, the cycling stability of metallic Zn anode under low temperature surroundings is severely hindered by harmful hydrogen evolution reaction (HER) and uncontrollable dendrite growth, which is ascribed to sluggish desolvation kinetics of hydrated [Zn(H2O)x]2+ and blocked Zn2+ diffusion kinetics. Herein, the strategy of “adsorption-sieving-catalysis” is initially proposed and the titanium nitride anchored on self-assembly porous reduced graphene oxide (TiN@RGO) as functional modulator is constructed on the surface of Zn anode. The abundant electrocatalytic sites on sieving pores significantly enhance interfacial desolvation, thereby accelerating Zn2+ diffusion kinetics for dendrite-free plating. Consequently, TiN@RGO modified Zn delivers a long-term stripping/plating lifespan above 2600 h at 0.5 mA cm−2 and maintains reversible stability of 500 h at 2 mA cm−2 even under low temperature of 0 °C. Decreasing to as low as −8 °C, stable overpotential around 130 mV without any short-circuit is achieved. The coupled full cell with MnO2 presents a high capacity retention of 72 % after 1000 cycles at 1.0 A g−1 at low temperature of 0 °C, providing new insights for the rational design of efficient LT-AZMBs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锌金属水电池(AZMB)因其固有的安全性和成本效益,在大规模储能方面大有可为。然而,由于水合[Zn(H2O)x]2+ 的脱溶动力学迟缓和 Zn2+ 扩散动力学受阻,金属锌阳极在低温环境下的循环稳定性受到有害的氢进化反应(HER)和不可控制的枝晶生长的严重阻碍。本文初步提出了 "吸附-筛分-催化 "的策略,并在锌阳极表面构建了锚定在自组装多孔还原氧化石墨烯上的氮化钛(TiN@RGO)作为功能调制剂。筛孔上丰富的电催化位点显著增强了界面脱溶,从而加速了 Zn2+ 扩散动力学,实现了无枝晶电镀。因此,TiN@RGO 修饰的 Zn 在 0.5 mA cm-2 的条件下可实现超过 2600 小时的长期剥离/电镀寿命,即使在 0 °C 的低温条件下,在 2 mA cm-2 的条件下也能保持 500 小时的可逆稳定性。温度降低到 -8 ℃ 时,过电位稳定在 130 mV 左右,不会出现任何短路现象。与二氧化锰耦合的全电池在 0 °C 低温下以 1.0 A g-1 的电流循环 1000 次后,容量保持率高达 72%,为合理设计高效的 LT-AZMB 提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
期刊最新文献
Zinc-regulated hard carbon as a sodium-ion battery anode material Optimization polypropylene separator by ultrathin Ti0.6Fe0.4O2 nanosheet coating for Li-metal battery Understanding cation interlayer (non)migration in alkali-ion Cr layered oxides Low-temperature dendrite-free Zn metal battery catalyzed by TiN-enhanced diffusion layer Rapid detection of dynamic electrochemical impedance spectroscopy of batteries based on sampling function excitation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1