{"title":"Automated chick gender determination using optical coherence tomography and deep learning","authors":"Jadsada Saetiew , Papawit Nongkhunsan , Jiraporn Saenjae , Rapeephat Yodsungnoen , Amonrat Molee , Sirichok Jungthawan , Ittipon Fongkaew , Panomsak Meemon","doi":"10.1016/j.psj.2025.105033","DOIUrl":null,"url":null,"abstract":"<div><div>Chick gender classification is crucial for optimizing poultry production, yet traditional methods such as vent sexing and ultrasound remain limited by human expertise, labor intensity, and insufficient resolution. This study introduces a novel approach that integrates Optical Coherence Tomography (OCT) and deep learning to enable high-resolution, non-invasive chick sexing. Unlike conventional imaging techniques, OCT provides micrometer-scale visualization of cloacal structures, allowing precise differentiation between male and female chicks based on internal anatomical markers. We developed a custom convolutional neural network (CNN) optimized for OCT data, incorporating asymmetric image resizing and enhanced feature extraction to improve classification accuracy. Our model achieved 79 % accuracy, outperforming conventional architectures such as Inception (63 %) and VGG-16 (74 %), highlighting the importance of a tailored, domain-specific model. This is the first study to integrate OCT with deep learning for automated chick sexing, demonstrating a scalable, real-time alternative to expert-dependent vent sexing. With further advancements in imaging and machine learning, our approach has the potential to transform chick sexing in commercial hatcheries, reducing reliance on skilled labor while enhancing classification efficiency and precision.</div></div>","PeriodicalId":20459,"journal":{"name":"Poultry Science","volume":"104 5","pages":"Article 105033"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Poultry Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003257912500272X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Chick gender classification is crucial for optimizing poultry production, yet traditional methods such as vent sexing and ultrasound remain limited by human expertise, labor intensity, and insufficient resolution. This study introduces a novel approach that integrates Optical Coherence Tomography (OCT) and deep learning to enable high-resolution, non-invasive chick sexing. Unlike conventional imaging techniques, OCT provides micrometer-scale visualization of cloacal structures, allowing precise differentiation between male and female chicks based on internal anatomical markers. We developed a custom convolutional neural network (CNN) optimized for OCT data, incorporating asymmetric image resizing and enhanced feature extraction to improve classification accuracy. Our model achieved 79 % accuracy, outperforming conventional architectures such as Inception (63 %) and VGG-16 (74 %), highlighting the importance of a tailored, domain-specific model. This is the first study to integrate OCT with deep learning for automated chick sexing, demonstrating a scalable, real-time alternative to expert-dependent vent sexing. With further advancements in imaging and machine learning, our approach has the potential to transform chick sexing in commercial hatcheries, reducing reliance on skilled labor while enhancing classification efficiency and precision.
期刊介绍:
First self-published in 1921, Poultry Science is an internationally renowned monthly journal, known as the authoritative source for a broad range of poultry information and high-caliber research. The journal plays a pivotal role in the dissemination of preeminent poultry-related knowledge across all disciplines. As of January 2020, Poultry Science will become an Open Access journal with no subscription charges, meaning authors who publish here can make their research immediately, permanently, and freely accessible worldwide while retaining copyright to their work. Papers submitted for publication after October 1, 2019 will be published as Open Access papers.
An international journal, Poultry Science publishes original papers, research notes, symposium papers, and reviews of basic science as applied to poultry. This authoritative source of poultry information is consistently ranked by ISI Impact Factor as one of the top 10 agriculture, dairy and animal science journals to deliver high-caliber research. Currently it is the highest-ranked (by Impact Factor and Eigenfactor) journal dedicated to publishing poultry research. Subject areas include breeding, genetics, education, production, management, environment, health, behavior, welfare, immunology, molecular biology, metabolism, nutrition, physiology, reproduction, processing, and products.