High-accuracy state-of-charge fusion estimation of lithium-ion batteries by integrating the Extended Kalman Filter with feature-enhanced Random Forest

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS Journal of energy storage Pub Date : 2025-03-19 DOI:10.1016/j.est.2025.116275
Zhihui Zhao , Farong Kou , Zhengniu Pan , Leiming Chen , Xi Luo , Tianxiang Yang
{"title":"High-accuracy state-of-charge fusion estimation of lithium-ion batteries by integrating the Extended Kalman Filter with feature-enhanced Random Forest","authors":"Zhihui Zhao ,&nbsp;Farong Kou ,&nbsp;Zhengniu Pan ,&nbsp;Leiming Chen ,&nbsp;Xi Luo ,&nbsp;Tianxiang Yang","doi":"10.1016/j.est.2025.116275","DOIUrl":null,"url":null,"abstract":"<div><div>Fusing data-driven techniques with model-based methods is a key focus in lithium-ion battery state-of-charge (SOC) estimation research. Previous studies have often utilized data-driven techniques to compensate for errors inherent in model-based methods. However, challenges such as feature acquisition, interpretability, and overfitting limit their effectiveness. This paper proposes a novel method for high-accuracy SOC estimation. Parameters of the dual polarization (DP) model are identified and utilized as feature inputs for Random Forest (RF). The suitability of these features is evaluated using maximal information coefficient and RF feature importance scoring. An enhanced RF model with seven feature inputs (RF-7F) significantly improves estimation accuracy. An innovative Extract Segment Fusion method integrates the Extended Kalman Filter (EKF) and RF-7F, resulting in a high-accuracy and robust SOC estimation approach termed EKF-RF-ESF (ERFE) method. Validation across five driving cycle tests (DST, FUDS, US06, BJDST, and NEDC) shows that ERFE achieves mean absolute errors (MAE) and root mean squared errors (RMSE) below 0.080 % and 0.107 %, respectively. Compared to EKF and RF-7F, ERFE reduces MAE by an average of 89.762 % and 49.279 %, and RMSE by an average of 87.673 % and 69.426 %, respectively. This method shows significant potential for application in electric vehicles and large-scale energy storage systems.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"118 ","pages":"Article 116275"},"PeriodicalIF":8.9000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X25009880","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Fusing data-driven techniques with model-based methods is a key focus in lithium-ion battery state-of-charge (SOC) estimation research. Previous studies have often utilized data-driven techniques to compensate for errors inherent in model-based methods. However, challenges such as feature acquisition, interpretability, and overfitting limit their effectiveness. This paper proposes a novel method for high-accuracy SOC estimation. Parameters of the dual polarization (DP) model are identified and utilized as feature inputs for Random Forest (RF). The suitability of these features is evaluated using maximal information coefficient and RF feature importance scoring. An enhanced RF model with seven feature inputs (RF-7F) significantly improves estimation accuracy. An innovative Extract Segment Fusion method integrates the Extended Kalman Filter (EKF) and RF-7F, resulting in a high-accuracy and robust SOC estimation approach termed EKF-RF-ESF (ERFE) method. Validation across five driving cycle tests (DST, FUDS, US06, BJDST, and NEDC) shows that ERFE achieves mean absolute errors (MAE) and root mean squared errors (RMSE) below 0.080 % and 0.107 %, respectively. Compared to EKF and RF-7F, ERFE reduces MAE by an average of 89.762 % and 49.279 %, and RMSE by an average of 87.673 % and 69.426 %, respectively. This method shows significant potential for application in electric vehicles and large-scale energy storage systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
期刊最新文献
Investigating lithium-ion battery discharge capacity under variable operating conditions using nature-inspired hybrid algorithms with minimal descriptors High-accuracy state-of-charge fusion estimation of lithium-ion batteries by integrating the Extended Kalman Filter with feature-enhanced Random Forest Real-time energy management based on aging- and temperature-conscious MPC for hybrid electric trains Enhancement of solar regulation of phase change material window using vanadium dioxide for performance improvements Boosting the cycling stability of Na3VFe(PO4)3 cathodes for sodium-ion batteries by zinc oxide coating
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1