{"title":"Deep eutectic solvent-based slurry for CO2 capture: Enhanced efficiency and kinetics","authors":"Sahar Foorginezhad, Xiaoyan Ji","doi":"10.1016/j.jcou.2025.103065","DOIUrl":null,"url":null,"abstract":"<div><div>The imperative need to mitigate CO<sub>2</sub> emissions has become increasingly critical due to their severe impact on environmental sustainability and public health. Among the emerging carbon capture technologies, deep eutectic solvent (DES)-based technologies have attracted significant attention owing to their facile synthesis and superior CO<sub>2</sub> capture capacity. However, their widespread industrial deployment has been hindered by challenges associated with high viscosity and cost. To address these limitations, this study adopts novel a approach that synergistically integrates cosolvent addition and immobilization to develop a slurry with enhanced CO<sub>2</sub> capture efficiency. Specifically, an aqueous DES solution was formulated using imidazolium chloride-ethylenediamine ([ImCl][EDA]) in a 1:6 molar ratio with water as the cosolvent, followed by the immobilization of DES onto mesoporous silica to form a composite slurry. CO<sub>2</sub> capture experiments revealed a high sorption capacity of 28.34 wt% at 22 °C and 1 bar, along with rapid sorption and desorption rates of 1.39 and 0.30 mol CO<sub>2</sub>/(kg sorbent·min) within the first 2 min. Furthermore, the slurry exhibited excellent cyclic stability, maintaining a 98 % recovery rate. The significant improvements in CO<sub>2</sub> capture capacity, desorption kinetics, and thermal stability underscore the potential of this hybrid system for scalable industrial applications in carbon capture and utilization.</div></div>","PeriodicalId":350,"journal":{"name":"Journal of CO2 Utilization","volume":"95 ","pages":"Article 103065"},"PeriodicalIF":7.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of CO2 Utilization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212982025000496","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The imperative need to mitigate CO2 emissions has become increasingly critical due to their severe impact on environmental sustainability and public health. Among the emerging carbon capture technologies, deep eutectic solvent (DES)-based technologies have attracted significant attention owing to their facile synthesis and superior CO2 capture capacity. However, their widespread industrial deployment has been hindered by challenges associated with high viscosity and cost. To address these limitations, this study adopts novel a approach that synergistically integrates cosolvent addition and immobilization to develop a slurry with enhanced CO2 capture efficiency. Specifically, an aqueous DES solution was formulated using imidazolium chloride-ethylenediamine ([ImCl][EDA]) in a 1:6 molar ratio with water as the cosolvent, followed by the immobilization of DES onto mesoporous silica to form a composite slurry. CO2 capture experiments revealed a high sorption capacity of 28.34 wt% at 22 °C and 1 bar, along with rapid sorption and desorption rates of 1.39 and 0.30 mol CO2/(kg sorbent·min) within the first 2 min. Furthermore, the slurry exhibited excellent cyclic stability, maintaining a 98 % recovery rate. The significant improvements in CO2 capture capacity, desorption kinetics, and thermal stability underscore the potential of this hybrid system for scalable industrial applications in carbon capture and utilization.
期刊介绍:
The Journal of CO2 Utilization offers a single, multi-disciplinary, scholarly platform for the exchange of novel research in the field of CO2 re-use for scientists and engineers in chemicals, fuels and materials.
The emphasis is on the dissemination of leading-edge research from basic science to the development of new processes, technologies and applications.
The Journal of CO2 Utilization publishes original peer-reviewed research papers, reviews, and short communications, including experimental and theoretical work, and analytical models and simulations.