Photon-enhanced thermionic emission devices with perovskite photovoltaic anodes for conversion of concentrated sunlight

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS Solar Energy Materials and Solar Cells Pub Date : 2025-03-18 DOI:10.1016/j.solmat.2025.113588
A. Bellucci , Y. Raoui , E. Bolli , M. Mastellone , R. Salerno , V. Valentini , R. Polini , A. Mezzi , A. Di Carlo , L. Vesce , D.M. Trucchi
{"title":"Photon-enhanced thermionic emission devices with perovskite photovoltaic anodes for conversion of concentrated sunlight","authors":"A. Bellucci ,&nbsp;Y. Raoui ,&nbsp;E. Bolli ,&nbsp;M. Mastellone ,&nbsp;R. Salerno ,&nbsp;V. Valentini ,&nbsp;R. Polini ,&nbsp;A. Mezzi ,&nbsp;A. Di Carlo ,&nbsp;L. Vesce ,&nbsp;D.M. Trucchi","doi":"10.1016/j.solmat.2025.113588","DOIUrl":null,"url":null,"abstract":"<div><div>Perovskite photovoltaic (PV) structures have been applied for the first time as anodes in photon-enhanced thermionic emission (PETE) devices to collect electrons as well as to photoelectrically convert the radiation emitted from high temperature silicon/diamond cathodes. Hybrid PETE-PV devices have been tested under concentrated sunlight, reaching the maximum cathode temperature of 650 °C. Experiments show that the PV anodes can operate without damage up to a cathode temperature of 560 °C, corresponding to an approximate surface anode temperature of 130 °C. The proposed converters in a 2-terminals configuration confirm an output voltage boost with respect to the mere PETE converters. Additionally, an effective reduction of the anode work function between 0.45 and 0.6 eV is achieved by depositing a 20 nm-thick scandium oxide coating. Even if the materials used for these proof-of-concept experiments are not optimized for the investigated operating temperature range, this study highlights the feasibility of using perovskites as photovoltaic anodes in PETE devices for the conversion of the concentrated solar radiation, thus opening the path for future development of the concept to large-area and low production cost perovskite PV-based structures in thermionic-based energy converters.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"286 ","pages":"Article 113588"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825001898","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Perovskite photovoltaic (PV) structures have been applied for the first time as anodes in photon-enhanced thermionic emission (PETE) devices to collect electrons as well as to photoelectrically convert the radiation emitted from high temperature silicon/diamond cathodes. Hybrid PETE-PV devices have been tested under concentrated sunlight, reaching the maximum cathode temperature of 650 °C. Experiments show that the PV anodes can operate without damage up to a cathode temperature of 560 °C, corresponding to an approximate surface anode temperature of 130 °C. The proposed converters in a 2-terminals configuration confirm an output voltage boost with respect to the mere PETE converters. Additionally, an effective reduction of the anode work function between 0.45 and 0.6 eV is achieved by depositing a 20 nm-thick scandium oxide coating. Even if the materials used for these proof-of-concept experiments are not optimized for the investigated operating temperature range, this study highlights the feasibility of using perovskites as photovoltaic anodes in PETE devices for the conversion of the concentrated solar radiation, thus opening the path for future development of the concept to large-area and low production cost perovskite PV-based structures in thermionic-based energy converters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
期刊最新文献
Photon-enhanced thermionic emission devices with perovskite photovoltaic anodes for conversion of concentrated sunlight Spectrum-tailorable two-dimensional silicon–titanium nitride selective emitter by photon recycling for thermophotovoltaic applications Synergistic optimization analysis of droplet cleaning efficiency on photovoltaic surfaces through volume regulation and dust removal dynamic mechanism Thermal stability and corrosion characteristic analysis of low melting point ternary molten salt for thermal energy storage Development of CH3COONa·3H2O-Glycine-KCl composite phase change material for the swimming pool heating system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1