A. Bellucci , Y. Raoui , E. Bolli , M. Mastellone , R. Salerno , V. Valentini , R. Polini , A. Mezzi , A. Di Carlo , L. Vesce , D.M. Trucchi
{"title":"Photon-enhanced thermionic emission devices with perovskite photovoltaic anodes for conversion of concentrated sunlight","authors":"A. Bellucci , Y. Raoui , E. Bolli , M. Mastellone , R. Salerno , V. Valentini , R. Polini , A. Mezzi , A. Di Carlo , L. Vesce , D.M. Trucchi","doi":"10.1016/j.solmat.2025.113588","DOIUrl":null,"url":null,"abstract":"<div><div>Perovskite photovoltaic (PV) structures have been applied for the first time as anodes in photon-enhanced thermionic emission (PETE) devices to collect electrons as well as to photoelectrically convert the radiation emitted from high temperature silicon/diamond cathodes. Hybrid PETE-PV devices have been tested under concentrated sunlight, reaching the maximum cathode temperature of 650 °C. Experiments show that the PV anodes can operate without damage up to a cathode temperature of 560 °C, corresponding to an approximate surface anode temperature of 130 °C. The proposed converters in a 2-terminals configuration confirm an output voltage boost with respect to the mere PETE converters. Additionally, an effective reduction of the anode work function between 0.45 and 0.6 eV is achieved by depositing a 20 nm-thick scandium oxide coating. Even if the materials used for these proof-of-concept experiments are not optimized for the investigated operating temperature range, this study highlights the feasibility of using perovskites as photovoltaic anodes in PETE devices for the conversion of the concentrated solar radiation, thus opening the path for future development of the concept to large-area and low production cost perovskite PV-based structures in thermionic-based energy converters.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"286 ","pages":"Article 113588"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825001898","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Perovskite photovoltaic (PV) structures have been applied for the first time as anodes in photon-enhanced thermionic emission (PETE) devices to collect electrons as well as to photoelectrically convert the radiation emitted from high temperature silicon/diamond cathodes. Hybrid PETE-PV devices have been tested under concentrated sunlight, reaching the maximum cathode temperature of 650 °C. Experiments show that the PV anodes can operate without damage up to a cathode temperature of 560 °C, corresponding to an approximate surface anode temperature of 130 °C. The proposed converters in a 2-terminals configuration confirm an output voltage boost with respect to the mere PETE converters. Additionally, an effective reduction of the anode work function between 0.45 and 0.6 eV is achieved by depositing a 20 nm-thick scandium oxide coating. Even if the materials used for these proof-of-concept experiments are not optimized for the investigated operating temperature range, this study highlights the feasibility of using perovskites as photovoltaic anodes in PETE devices for the conversion of the concentrated solar radiation, thus opening the path for future development of the concept to large-area and low production cost perovskite PV-based structures in thermionic-based energy converters.
期刊介绍:
Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.