Dual scale Residual-Network for turbulent flow sub grid scale resolving: A prior analysis

IF 2.5 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Fluids Pub Date : 2025-03-18 DOI:10.1016/j.compfluid.2025.106592
Omar Sallam, Mirjam Fürth
{"title":"Dual scale Residual-Network for turbulent flow sub grid scale resolving: A prior analysis","authors":"Omar Sallam,&nbsp;Mirjam Fürth","doi":"10.1016/j.compfluid.2025.106592","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces generative Residual Networks (ResNet) as a surrogate Machine Learning (ML) tool for Large Eddy Simulation (LES) Sub Grid Scale (SGS) resolving. The study investigates the impact of incorporating Dual Scale Residual Blocks (DS-RB) within the ResNet architecture. Two LES SGS resolving models are proposed and tested for prior analysis test cases: a super-resolution model (SR-ResNet) and a SGS stress tensor inference model (SGS-ResNet). The SR-ResNet model task is to upscale LES solutions from coarse to finer grids by inferring unresolved SGS velocity fluctuations, exhibiting success in preserving high-frequency velocity fluctuation information, and aligning with higher-resolution LES solutions’ energy spectrum. Furthermore, employing DS-RB enhances prediction accuracy and precision of high-frequency velocity fields compared to Single Scale Residual Blocks (SS-RB), evident in both spatial and spectral domains. The SR-ResNet model is tested and trained on filtered/downsampled 2-D LES planar jet injection problems at two Reynolds numbers, two jet configurations, and two upscale ratios. In the case of SGS stress tensor inference, both SS-RB and DS-RB exhibit higher prediction accuracy compared to other explicit closure models such as the Smagorinsky model or the Approximate Deconvolution Model (ADM) with reference to the true DNS SGS stress tensor, with DS-RB-based SGS-ResNet showing stronger statistical alignment with DNS data. The SGS-ResNet model is tested on a filtered/downsampled 2-D DNS isotropic homogeneous decay turbulence problem. The adoption of DS-RB incurs notable increases in network size, training time, and forward inference time, with the network size expanding by over tenfold, and training and forward inference times increasing by approximately 0.5 and 3 times, respectively.</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"292 ","pages":"Article 106592"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793025000520","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces generative Residual Networks (ResNet) as a surrogate Machine Learning (ML) tool for Large Eddy Simulation (LES) Sub Grid Scale (SGS) resolving. The study investigates the impact of incorporating Dual Scale Residual Blocks (DS-RB) within the ResNet architecture. Two LES SGS resolving models are proposed and tested for prior analysis test cases: a super-resolution model (SR-ResNet) and a SGS stress tensor inference model (SGS-ResNet). The SR-ResNet model task is to upscale LES solutions from coarse to finer grids by inferring unresolved SGS velocity fluctuations, exhibiting success in preserving high-frequency velocity fluctuation information, and aligning with higher-resolution LES solutions’ energy spectrum. Furthermore, employing DS-RB enhances prediction accuracy and precision of high-frequency velocity fields compared to Single Scale Residual Blocks (SS-RB), evident in both spatial and spectral domains. The SR-ResNet model is tested and trained on filtered/downsampled 2-D LES planar jet injection problems at two Reynolds numbers, two jet configurations, and two upscale ratios. In the case of SGS stress tensor inference, both SS-RB and DS-RB exhibit higher prediction accuracy compared to other explicit closure models such as the Smagorinsky model or the Approximate Deconvolution Model (ADM) with reference to the true DNS SGS stress tensor, with DS-RB-based SGS-ResNet showing stronger statistical alignment with DNS data. The SGS-ResNet model is tested on a filtered/downsampled 2-D DNS isotropic homogeneous decay turbulence problem. The adoption of DS-RB incurs notable increases in network size, training time, and forward inference time, with the network size expanding by over tenfold, and training and forward inference times increasing by approximately 0.5 and 3 times, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
期刊最新文献
Dual scale Residual-Network for turbulent flow sub grid scale resolving: A prior analysis A lattice Boltzmann flux solver for numerical simulation of flows with the viscoelastic fluid Editorial Board 3D mesh regularization within an ALE code using a weighted line sweeping method Advanced numerical methods for conjugate heat transfer problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1